整个生命过程中的组织氧合取决于血红蛋白 (Hb) 的活性,血红蛋白是一种血红素蛋白,它结合肺部的氧气并确保氧气输送到全身。Hb 由四个单体组成,由八个不同的基因编码,这些基因的表达在发育过程中受到严格调控,导致每个发育阶段形成不同的血红蛋白四聚体。改变血红蛋白结构或其受调控表达的突变会导致一大群疾病,通常称为血红蛋白病,是全球最常见的遗传缺陷之一。过去几十年来,前所未有的努力部分揭示了控制整个发育过程中珠蛋白基因表达的复杂机制。此外,全基因组关联研究揭示了能够改善严重血红蛋白病临床表现的保护性遗传特征。这些知识推动了对创新治疗方法的探索,旨在修改受影响细胞的基因组或表观基因组,以恢复血红蛋白功能或模仿保护性特征的影响。这里我们描述了控制发育过程中不同珠蛋白基因表达转换的关键步骤,并强调了为治疗目的改变珠蛋白调控的最新努力。
假单胞菌具有代谢灵活性,可以在不同的植物宿主上茁壮成长。然而,宿主滥交所需的代谢适应性尚不清楚。在这里,我们通过采用 RNAseq 并比较东湖假单胞菌 P482 对两种植物宿主(番茄和玉米)根系分泌物的转录组反应来弥补这一知识空白。我们的主要目标是找出这两种反应之间的差异和共同点。仅由番茄分泌物上调的途径包括一氧化氮解毒、铁硫簇的修复、通过对氰化物不敏感的细胞色素 bd 进行呼吸以及氨基酸和/或脂肪酸的分解代谢。前两个表明测试植物的分泌物中存在 NO 供体。玉米特异性地诱导了 MexE RND 型外排泵的活性和铜耐受性。与运动相关的基因由玉米诱导,但被番茄抑制。对渗出液的共同反应似乎受到来自植物的化合物和来自其生长环境的化合物的影响:砷抗性和细菌铁蛋白合成上调,而硫同化、柠檬酸铁和/或其他铁载体的感知、血红素获取和极性氨基酸的运输下调。我们的研究结果为探索植物相关微生物的宿主适应机制提供了方向。
关键词:定向进化,酶工程我们创建的酶催化了在生物系统中未知的反应。我们通过从现有蛋白质的“混杂”活性开始,指导新酶的演变,从而确定合成化学可能已知的催化活性,但尚未(尚未发现)。我们发现,血红素蛋白是新生物化学的绝妙来源:工程化的细胞色素P450和其他血红素蛋白催化了广泛的合成有用的碳和硝酸盐转移反应,从烷烃环丙烷从SI-C键形成到CH键的SI-C键形成,直达C-H键的氨化。观察大自然的巨大蛋白质目录的成员如何进化(只有几个突变)如何以高效率和选择性催化这些反应,甚至形成生物学中未知的化学键。这些结果表明,进化可以创新并使生活能够应对新的挑战或机遇的轻松。将来这些完全遗传编码的催化剂可能会进入生命未探索的大量化学空间。这些催化剂已经为使用化学计量试剂,罕见的过渡金属催化剂和有机溶剂提供了有效,成本效益,绿色的生物催化替代品,可在生产各种精美的化学品和药物中间体中生产有机溶剂。“用于碳硅键形成的细胞色素C的定向演变:将硅变成生命” S.B.J. Kan,R。D。Lewis,K。Chen,F。H。Arnold。 科学354,1048-1051(2016)。 Forte,D。Rozzell,J。 A. McIntosh,F。H。Arnold。 J.J. Kan,R。D。Lewis,K。Chen,F。H。Arnold。科学354,1048-1051(2016)。Forte,D。Rozzell,J。A. McIntosh,F。H。Arnold。 J.A. McIntosh,F。H。Arnold。J.“高度立体选择性的生物催化合成钥匙环丙烷中间至Ticagrelor” K。E. Hernandez,H。Renata,R。D. Lewis,S。B. J. Kan,C。Zhang,C。Zhang,J。J.ACS催化6,7810-7813(2016)。“酶控制的氮原子转移使C-H氨酸恢复”A. McIntosh,F。H。Arnold。 am。 化学。 Soc。 136,15505-15508(2014)“化学仿生生物催化:利用辅助因子依赖性酶的合成潜力来产生新的催化剂” C。K. Prier,F。H. Arnold。 J. am。 化学。 Soc。 137,13992-14006(2015)A. McIntosh,F。H。Arnold。am。化学。Soc。136,15505-15508(2014)“化学仿生生物催化:利用辅助因子依赖性酶的合成潜力来产生新的催化剂” C。K. Prier,F。H. Arnold。J.am。化学。Soc。137,13992-14006(2015)
结果:排名靠前的靶标之一是去泛素化酶 USP1。USP1 在 DNA 损伤修复过程中发挥着重要作用,包括跨损伤合成和范康尼贫血途径。我们开发了一系列小分子抑制剂,这些抑制剂对 USP1 具有强效且高度选择性,相对于其他家族成员而言。这些抑制剂在细胞中具有活性,导致 USP1 单泛素化底物的积累,并在具有 BRCA 突变或其他 HRD 变异的细胞系中表现出选择性抗增殖活性。在卵巢衍生和三阴性乳腺癌 (TNBC) 衍生肿瘤异种移植模型中对我们的先导化合物 KSQ-4279 的评估表明,其具有剂量依赖性肿瘤生长抑制作用。在对 PARP 抑制剂仅部分敏感的异种移植模型中,KSQ-4279 与 PARP 抑制剂的组合比单独使用任何一种药物可显著改善肿瘤消退并延长其持续时间。 KSQ-4279 在多种非临床物种中具有良好的体外 ADME 特性和药代动力学特征。初步安全数据表明,KSQ-4279 作为单一药物和与 PARP 抑制剂联合使用具有良好的耐受性,没有证据表明存在剂量限制性血红素相关毒性。
超过十种构成天然和半合成产品的麦角生物碱用于治疗各种疾病1,2。中央C环形成了麦角生物碱的核心药效团,使它们与神经递质的结构相似,从而使它们能够调节神经递质受体3。Haem过氧化氢酶Chanoclavine合酶(EASC)通过复杂的自由基氧化环化4。与催化H 2 O 2催化5,6的规范过氧化氢酶不同,EASC及其同源物代表了更广泛的催化酶,可催化O 2依赖性自由基反应4,7。我们已经通过冷冻电子显微镜阐明了EASC的结构,揭示了烟酰胺腺苷二核苷酸磷酸磷酸磷酸(降低)(NADPH)(NADPH) - 结合口袋和所有Haem Catalases共同的山囊,据我们所知,所有独特的同型含量结构是唯一的同型结构,此前是唯一的同型结构。底物preganclavine在NADPH结合口袋中实现了前所未有的结合,而不是先前怀疑的出血口袋,并且通过细长的隧道连接了两个口袋。与既定机制相反,EASC使用超氧化物,而不是更普遍使用的短暂性血红素 - 氧复合物(例如化合物I,II和III)8,9,通过对两个远处袋的超氧化物介导的合作催化来介导底物转化。我们提出,这种活性氧机制可以在金属酶催化的反应中广泛。
摘要:三氟甲基(–CF 3)组代表药物中高度普遍的功能。在过去的几十年中,在三氟甲基化的合成方法的发展中取得了重大进展。相比之下,目前尚无已知的金属酶可以催化C(SP 3)–CF 3键。在这项工作中,我们证明了一种非血红素铁酶,羟基苯甲酸酯合成酶来自杏仁核东方(aohms),能够从高度碘(III)试剂中产生CF 3的自由基,并指导它们以辅助性烯烃丙烯酸烷烯三氟甲酰胺甲氮化酶。建立了基于Staudinger Liga的高通量筛选(HTS)平台(HTS)平台,从而实现了对这种物质转化的AOHMS变体的快速评估。最终优化的变体接受一系列烯烃底物,产生三氟甲基氮化产物的产物,产量高达73%和96:4对映体比率(E.R.)。生物催化平台可以通过改变碘(III)试剂来进一步扩展到烯烃五氟乙基氮化氮化和重氮化。另外,阴离子竞争实验为这种生物学转变提供了对根本反弹过程的见解。这项研究不仅扩大了金属酶的催化库,以进行根本转化,而且还为有机氟的合成创造了新的酶促空间。
抽象的β-核阿无血症,尤其是其输血依赖性形式(TDT)是一种苛刻的临床状况,需要终身护理和随访,理想情况下是专业中心和多学科专家团队。尽管在过去几十年中,TDT诊断和治疗方面取得了重大进展,这显着改善了患者的预后,但其管理仍然具有挑战性。一方面,诊断和治疗进展并未同样应用于世界上所有患者,尤其是在东部几个高额地区。在另一个近期接受大量移民Thalassexypation的西方国家的医疗保健系统中,尚未准备好满足患者的特殊需求。Thalassia International Federation(TIF)是一名全球患者驱动的雨伞联合会,在62个国家 /地区拥有232个成员关联,努力通过促进教育,研究,认识和倡导,为所有患有Thalalsamia或其他血红素病的患者提供平等获得优质护理。TIF的主要行动之一是对这些患者管理的临床实践指南的开发和传播。在2021年,发布了TIF管理指南TDT的第四版。全文提供有关TDT患者治疗的详细信息以及临床表现,病理生理学,诊断方法以及疾病并发症或可能发生的其他临床实体的治疗,同时还涵盖了相关的心理社会和组织问题。本文档是2021 TIF指南的摘要,该指南主要关注临床实践问题和建议。
摘要:癌症是一种巨大的全球疾病负担。每年,全世界有数千万人被诊断出患有癌症,其中超过一半的人死亡。海洋环境的巨大生物多样性越来越激发了专家的利益,尤其是在药物发现领域。在从海洋海绵中分离出来的一组真菌中,已经选择了海洋真菌曲霉的烟曲霉,因为它表现出明显的抗菌活性,朝向一组致病微生物。通过扩增和分析其18sRRNA基因的遗传鉴定,真菌已被鉴定出来。真菌粗提取物是通过稻米培养基上的真菌培养而获得的。对各种致病微生物的抗菌活性进行了测试。结果表明对铜绿假单胞菌,金黄色葡萄球菌,尼日尔和白色念珠菌具有明显的抗菌作用。此外,我们使用了三种不同的方法:ATBS,DPPH和脂质过氧化测定法测试了曲霉烟草WA7S6粗提取物的抗氧化潜力。结果表明,粗提取物WA7S6的IC50值为21.35 µg/ml。还针对HELA,MCF和WI-38等癌细胞系评估了粗提取物的抗癌潜力。通过GC质量和在血红素加氧酶识别化合物的硅分子对接中鉴定了真菌提取物的化学培养酯和脱氢膜内酯可能与抗氧化剂有关。
[1] Nam Sh,Lee J,A YJ。Euglena物种作为土壤生态毒性评估的生物指导者的潜力。Comp Biochem Physiol C Toxicol Pharmacol,2023,267:109586 [2] Proctor MS,Sutherland GA,Canniffe DP等。(杆菌)叶绿素生物合成的末端酶。r Soc Open Sci,2022,9:211903 [3] Solymosi K,Mysliwa-Kurdziel B.叶绿素及其在食品工业和医学中使用的衍生物。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。 通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。 分子,2023,28:5344 [5] Sun D,Wu S,Li X等。 衍生自微藻的叶绿素的结构,功能和潜在药物作用。 Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。 红移的叶绿素。 Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。 Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。分子,2023,28:5344 [5] Sun D,Wu S,Li X等。衍生自微藻的叶绿素的结构,功能和潜在药物作用。Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。红移的叶绿素。Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。光化学超出了含有叶绿素F的光系统的红色极限。Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。修饰的四吡咯的生物合成 - 生命的颜料。J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Chlamydomonas Sourcebook(第三版)。剑桥:学术出版社,2023:691-731 [12] Tanaka R,Kobayashi K,Masuda T.拟南芥的Tetrapyrole代谢。拟南芥书,2011,9:145-85 [13] Brzezowski P,Richter AS,Grimm B.植物和藻类中四吡咯生物合成的调节和功能。Biochim Biophys Acta,2015年,1847年:968-85 [14] Wang P,JI S,GrimmB。植物四吡咯生物合成中代谢检查点的翻译后调节。J Exp Bot,2022,73:4624-36 [15] Zhao A,Fang Y,Chen X等。拟南芥谷氨酰基-TRNA还原酶及其刺激蛋白中的晶体结构。Proc Natl Acad Sci u S A,2014,111:6630-5 [16] Fang Y,Zhao S,Zhang F等。拟南芥谷氨酰基-TRNA还原酶(Glutr)形成带有流感和谷物结合蛋白的三元复合物。SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。 酶叶绿素生物合成中酶促光催化的结构基础。 自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。 的晶体结构SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。酶叶绿素生物合成中酶促光催化的结构基础。自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。
Juglans Regia L.(核桃)由于其各种药物特性,包括其神经保护作用,对神经系统疾病的影响。此更新的评论阐明了核桃在阿尔茨海默氏病,帕金森氏病,抑郁症,癫痫和疼痛等神经系统疾病中的治疗潜力,并得到了体内和体外研究的证据的支持。These beneficial effects are attributed to the walnut's rich composition of bioactive compounds, including gallic acid, protocatechuic acid, ferulic acid, sinapate, ellagic acid, p-hydroxybenzoic acid, p-coumaric acid, quercetin 3-galactoside, juglone, vanillic acid, quercetin, myricetin, kaempferol,阿apigenin,luteolin,daidzein等。核桃的神经保护作用的机制包括减少氧化应激,炎症,凋亡,凋亡,蛋白水解,β-淀粉样菌斑的积累,乙酰胆碱酯酶(ACHE)活性,磷酸化 - 磷酸化-C-Jun n- n-N-末端激酶(P-Jnk)水平,升高的(P-Jnk)水平提高了Trive Reverratial Trive Restrigntry TriveTrient(MITONTRED)(MITOINT)(MITOINT)(MITOINT)(MITOINT)(MITOINT)(MITOINT)。稳态,线粒体相关蛋白的表达以及激活核因子红系2相关因子2(NRF2)/KELCH类似ECH相关的蛋白1(KEAP1)/血红素氧酶-1(HO-1)途径。尽管核桃在管理神经系统疾病及其并发症方面具有巨大的希望,但仍需要进行进一步的临床前和临床研究,以巩固这些发现。这项全面的评论强调了核桃作为天然治疗剂的潜力,并鼓励未来的研究以释放其全部神经保护潜力。