深度学习技术的最新进展为协助病理学家从全切片病理图像(WSI)中预测患者的生存期带来了可能性。然而,大多数流行的方法仅适用于WSI中特定或随机选择的肿瘤区域中的采样斑块,这对于捕捉肿瘤与其周围微环境成分之间复杂相互作用的能力非常有限。事实上,肿瘤在异质性肿瘤微环境(TME)中得到支持和培育,详细分析TME及其与肿瘤的相关性对于深入分析癌症发展的机制具有重要意义。在本文中,我们考虑了肿瘤与其两个主要TME成分(即淋巴细胞和基质纤维化)之间的空间相互作用,并提出了一种用于人类癌症预后预测的肿瘤微环境相互作用引导图学习(TMEGL)算法。具体来说,我们首先选择不同类型的块作为节点来为每个 WSI 构建图。然后,提出了一种新颖的 TME 邻域组织引导图嵌入算法来学习可以保留其拓扑结构信息的节点表示。最后,应用门控图注意网络来捕获肿瘤与不同 TME 组件之间与生存相关的交集以进行临床结果预测。我们在来自癌症基因组图谱 (TCGA) 的三个癌症队列上测试了 TMEGL,实验结果表明 TMEGL 不仅优于现有的基于 WSI 的生存分析模型,而且对生存预测具有良好的可解释能力。
与基于卷积神经网络(CNN)相比,我们研究了基于变压器的行人检测模型较低性能的原因。CNN模型会产生密集的行人建议,单独完善每个建议,然后对其进行非最大抑制(NMS)的跟进,以产生稀疏的预测。在争论中,变压器模型每个地面真相(GT)行人盒选择一个建议,然后从中选择了正面的正态。所有其他建议,其中许多与选定的建议高度相似,都通过了负梯度。尽管这导致了稀疏的预测,从而消除了NM的需求,但在许多类似的建议中,任意选择,有效的训练和较低的行人检测准确性。为了减轻问题,我们建议基于Min-Cost-Flow的配方,而不是常用的Kuhn-Munkres匹配算法,并纳入了诸如每个地面真相盒的约束,并且与一个建议的提案相匹配,并且许多同样好的建议可以与单个地面真相盒相匹配。我们提出了基于匹配算法的第一个基于变压器的行人检测模型。广泛的实验表明,我们的方法达到了3个失误率(较低)3。7 /17。4 /21。8/8。3/2。0在Eurocity / tju-traffic / tju-校园 /城市专家 /加州理工学院数据集中,而4个。7/18。7/24。8/8。5/3。 1通过当前的sota。 代码可从https://ajayshastry08.github.io/flow_ matcher 获得。5/3。1通过当前的sota。代码可从https://ajayshastry08.github.io/flow_ matcher
我们应对行人模拟中的内容多样性和收获性的挑战,以驱动方案。最近的行人动画框架具有重要的限制,其中他们主要关注轨迹[48]或参考视频[60]的内容,因此忽略了这种情况下人类运动的潜在多样性。这种限制限制了产生行人行为的能力,这些行为表现出更大的变化和现实动作,因此重新严格使用其用法,为驾驶模拟系统中的其他组件提供丰富的运动内容,例如,突然改变了自动驾驶汽车应响应的运动。在我们的方法中,我们努力通过展示从各种来源获得的各种人类动作(例如生成的人类运动)来超越限制,以遵循给定的轨迹。我们的框架的基本贡献在于将运动跟踪任务与轨迹结合到以下,这可以跟踪特定运动零件(例如上半身),同时遵循单个策略的给定轨迹。以这种方式,我们在给定情况下显着增强了模拟人类运动的分歧,以及内容的可控性,包括基于语言的控制。我们的框架有助于生成
CTDOT 支持立法,允许市政当局在市政道路上设定最低 25 英里/小时的速度限制。大多数市政当局对自己道路的状况有深入的了解。这些条件包括交通类型和交通量、交通速度、相邻土地用途、行人交通水平以及机动车和行人之间发生冲突的可能性。允许市政当局自行设定速度限制将使他们能够仔细调整本地速度限制以适合当地情况的水平。如果工程研究表明较低的限制是合理的,市政当局可以设定低于 25 英里/小时的速度限制。
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
在发布政策中指定了此版本的手稿的重复使用条款和条件。使用受版权保护的作品需要权利持有人(作者或出版商)的同意。可根据创意共享许可证或发布者的定制许可提供的作品可根据其中包含的条款和条件使用。有关更多信息和条款和条件,请参见编辑网站。此项目是从IrisUniversitàPolitecnicadelle Marche(https://iris.univpm.it)下载的。引用时,请参阅已发布的版本。
与前几年一致,在原始数字方面,加利福尼亚,佛罗里达州和德克萨斯州的死亡人数最多。一起,这三个州在2024年上半年占所有行人死亡的三分之一以上(35%)。但是,它们仅占美国人口的28%。这三个倾向于有更温暖的气候(可能会促使更多的人走路)和大型城市中心(导致更多潜在的车辆冲突)这一事实可能有助于解释这一差距。图5说明了这些数据。