本报告构成了《星球Internet AB》(IOP)的第二份年度温室气体排放报告。iop是一家气候和自然影响公司,负责管理指数路线图计划的秘书处,任务是将创新者,变压器和颠覆者团结起来,通过指数级的气候行动和解决方案,到2030年将所有排放量减少。本报告致力于报告《星球Internet》(2023年1月至12月12日)产生的温室气体排放,并得到2023年2023年财务业绩报告和一份影响报告(2022年1月至2023年12月12日)。2023年的营业额为11.8 MSEK,该公司平均拥有8名全职员工。该报告的目的是增加对驱动公司温室气体排放的原因的理解,以便将减少措施的优先级列为优先级;并遵守SME气候中心的要求。2022年已被选为公司气候报告的基准年。IOP的气候报告也是通过中小企业气候中心进行的。
COSPAR结构中的委员会和面板中的一个特殊情况是行星保护面板(PPP),它为追求行星探索的太空机构提供了重要功能。COSPAR PPP的主要目标是制定,维护和促进COSPAR政策和相关要求的太空国家,并指导遵守112个国家今天批准的外太空条约,以防止前进和后退污染的有害影响,i。 e。
The 17 Rare Earths are cerium (Ce), dysprosium (Dy), erbium (Er), europium (Eu), gadolinium (Gd), holmium (Ho), lanthanum (La), lutetium (Lu), neodymium (Nd), praseodymium (Pr), promethium (Pm), samarium (Sm), scandium (Sc), terbium (TB),Thulium(TM),Ytterbium(Yb)和Yttrium(Y)。这些矿物具有独特的磁性,发光和电化学性能,因此在许多现代技术中都使用,包括消费电子,计算机和网络,通信,卫生保健,国防,清洁能源技术等。即使是未来主义的技术也需要这些REE。
fortran和c编译器,预计可以在其他可以使用SUC H架构的计算密集程序上进行类似的结果。个人组合范围从Compaq 386到T t的X-Windows连接到ARDENT,并在科学家的办公桌上以计算能力和显示结果。this大大降低了L P I科学家对现有VAX和Microvax的依赖性,并在LPI计算环境中取得了整体改进。计算机中心由Kinpong Leung,计算机系统Man Ager(713-486-2165,LPL :: Leung on span上)与Brian Fessler(713-486-2184,LPI :: Fessler on Span上)负责,负责图像处理设施和Scott Lee(713-486-21186-2181,LPL): 设施。Ardent Titan计算机的网络地址是lpiipf.jsc.jesnet.nasa.gov。
Scientific PI of two scientific payloads: Dust Analyzer for Chinese asteroid mission (2021-2025) & Solar X-ray Detector for “Aoke-1” Satellite (2020-2022) Macau Natural Science Award 2016 (First Prize) & 2022 (Second Prize) FDCT – 2022-2025 – PI – Study on electrostatic migration mechanism of dust in space environment FDCT – 2019-2022 – PI - Chang'e-4 Lunar勘探数据NSFC-FDCT的科学分析 - 2017-2020 - PI - 关于某些主要核反应的理论研究及其在火星辐射环境研究中的应用FDCT - 2014- 2017年 - PI - PI - PI- PI - 有关Lunar Dust
背景 行星科学是研究太阳系行星体的形成、演化和相互作用的科学,包括行星及其卫星、矮行星、小行星和围绕太阳运行的彗星,涵盖地质学、天文学和大气科学等多个科学学科。 天体生物学是研究宇宙中生命的起源、演化和分布的科学。行星科学家和天体生物学家使用太空任务、地面望远镜、实验室实验、地面实地工作和理论研究相结合的方式开展研究。 联邦政府对行星科学和天体生物学研究与开发 (R&D) 的支持主要来自美国国家航空航天局 (NASA) 的行星科学部,该部门由该机构的科学任务理事会 (SMD) 管理。美国国家科学基金会 (NSF) 数学和物理科学 (MPS) 理事会下的天文科学部 (AST) 通过其相关的地面天文学项目提供适度支持。十年调查是一个为期两年的过程,大约每十年进行一次,最终发布一份最终报告,旨在回顾某一学科过去十年的科学进展,就未来十年的科学重点达成社区共识,并推荐一个综合计划以最好地解决这些问题。NASA 和 NSF 安排美国国家科学、工程和医学院 1 对未来十年的行星科学和天体生物学进行十年调查。除了负责制定十年科学战略外,十年调查委员会还首次在行星科学十年调查中负责考虑并提出有关行星防御 2 和多样性、公平性和包容性的具体建议。2022 年 4 月 19 日,美国国家科学院发布了最终报告《起源、世界和生命:2023-2032 年行星科学和天体生物学十年战略》(行星十年)。 3 行星十年优先科学问题 虽然之前的十年战略主要是按照目的地来组织的,但 NASA 在其对十年调查委员会的指示中要求调查“按照行星科学、天体生物学和行星防御中的重要、总体问题来组织。” 在这方面,新的行星十年围绕十二个优先科学问题组织了其研究战略 4 ,这些问题涵盖三大科学主题:起源、世界和过程以及生命和宜居性。
通过我与Cresst的研究,我支持在我的赞助商Mahmooda Sultana博士的领导下,开发了为行星科学太空任务的两种剪裁小型工具的开发。我们第一个项目的总体目标是制造由纳米材料(包括石墨烯,氧化石墨烯和碳纳米管)启用的化学传感器平台,以检测太阳系中的行星/卫星上的低浓度目标气体。我的工作涉及测试这些传感器和设计实验,以表征它们对氢,甲烷,氨和二氧化碳等气体物种的敏感性和选择性。这些实验的结果和随后的数据分析为制造技术,传感器性能和可能的传感机制之间的关系提供了关系。
在过去十年中,太空探索的力度大大增加,因此需要新的方法来研究行星和其他天体。现代趋势是制造能够从更高角度侦察表面的航天器,而无人机已被证明是最有用的。一般来说,无人机以其灵活性、速度、悬停能力、避障、目标跟踪和跟随而闻名。认为任何类型的无人机都适合太空应用都是合理的,因为它们都具有可以满足任务要求的优势。太空领域的设计选择深受一些限制的影响,例如最大尺寸、总重量、成本、环境、温度。此外,还需要考虑使平台能够执行任务的基本要求,这些要求通常由各种子系统来确保:热、通信、机载数据处理、电力、推进以及制导、导航和控制。太空探索的主要焦点是火星和旋翼机概念:事实上,Ingenuity 直升机就是一个很好的例子,如图 1 所示,它于 2021 年在红色星球上进行了首次飞行。火星大气与地球不同,这带来了特殊的空气动力学挑战。第一个很大的变化是低大气密度,再加上无人机尺寸有限,导致弦基雷诺数流动非常低(103-104)[1]。这些流动更多的是以粘性力而非惯性力为特征,导致机翼性能效率下降。这会影响升力,但较低的重力加速度(3.71 m/s2)略微补偿了升力。自 20 世纪 30 年代以来,人们在该领域进行了各种研究,并且可以确定三个描述流动行为的区域:亚临界( Re < 10 5 )、临界( Re ∼ 10 5 )和超临界( Re > 10 5 )。对于火星研究,重点放在亚临界区域,其中层流边界层倾向于分离,导致阻力系数较大,升力系数降低。这种层流分离流的不稳定性导致向湍流的转变,这会引起重新附着,从而产生层流分离气泡,影响翼部的性能。可以采用各种方法来进行气动分析:例如,将流动视为完全层流 [2] 或使用 RANS、LES
空间研究委员会的行星保护政策是全球技术官僚治理的胜利。该政策由一群科学专家制定,随后受到科学和空间界的高度重视。然而,由于空间研究委员会是一个没有任何法律授权的独立组织,行星保护政策是所谓“软法”或不具约束力的国际文书的一个例子,简而言之,没有人有任何法律义务遵守它们。该政策与《外层空间条约》第九条及其呼吁避免对月球和其他天体造成“有害污染”的规定相关。虽然地球轨道以外的空间活动一直是政府科学空间机构的专属领域,但这并没有造成什么问题。然而,随着私人和“非科学”空间活动的激增并开始将其范围扩展到地球轨道以外,行星保护政策正在接受考验。本文将探讨在“新太空”时代制定和维持有效的行星保护制度所面临的挑战。这将涉及现有政策及其所处的治理框架。然而,不仅要考虑和了解政策本身的具体内容,还要考虑和了解政策必要性的科学基础。最后,本文将考虑是否需要更广泛的“环境”框架,因为太空活动的类型和地点多种多样。