金星是太阳系中最神秘、最有趣的探索地点之一。然而,金星表面环境恶劣,岩石密布,温度、压力极高,化学腐蚀性极强。探测金星表面的行星探测车具有科学价值,但必须使用非常规方法代替传统的机器人控制和机动性。这项研究提出,张拉整体结构可以提供适应性和控制性,代替传统的机械装置和电子控制,用于金星表面和其他极端环境中的机动性。张拉整体结构重量轻且柔顺,由简单重复的刚性和柔性构件构成,仅通过张力稳定,灵感来自生物学和几何学,适合折叠、展开和适应地形。它们还可以利用智能材料和几何学的特性来实现规定的运动。根据科学探索的需要,简单的张拉整体探测车可以提供机动性和对地形和环境条件的稳健性,并可以由风等环境源提供动力。各种各样的张拉整体结构都是可能的,这里提出了一些适用于不稳定和复杂环境的初步概念。关键词:行星探测器,金星,张拉整体结构
报告的范围包括地面、地下和空中行星机器人,同时将一些相关领域推迟到其他专门的努力和报告。研究结果列出了一系列高优先级机器人技术,如果通过有针对性的投资使其成熟,则可以实现行星科学十年调查中强调的高优先级任务,或有可能在本十年及以后取得突破性进展。十年调查没有针对比新前沿更小的任务提出具体建议,但它确实概述了这些任务可以解决的引人注目的科学问题。因此,包括可能影响发现号、小型创新行星探索任务 (SIMPLEx) 级及更小任务的技术。十年调查还建议将科学有效载荷送往月球,例如通过 PRISM(月球表面有效载荷和研究调查)和 CLPS(商业月球有效载荷服务)计划。在这一范围内,研究小组确定了 NASA 应该投资机器人技术开发和融合的首要领域。
摘要 — 移动机器人团队将在未来探索地外天体表面的任务中发挥关键作用。在遥远、具有挑战性和未知的环境中操作时,设置基础设施和采集科学样本是一项昂贵的任务。与当前的单机器人太空任务相比,未来的异构机器人团队将通过增强的自主性和并行性来提高效率,通过功能冗余来提高稳健性,并从各个机器人的互补能力中受益。在本文中,我们介绍了我们的异构机器人团队,该团队由飞行和驾驶机器人组成,我们计划在 2021 年作为 ARCHES 项目的一部分在意大利西西里岛埃特纳火山的月球模拟地点部署科学采样演示任务。我们描述了机器人的个体能力及其在两个任务场景中的作用。然后,我们介绍其中重要任务的组件和实验:自动任务规划、高级任务控制、光谱岩石分析、基于无线电的定位、类似月球和火星场景中的协作多机器人 6D SLAM,以及自主样本返回的演示。