摘要:使用卫星对卫星系统的无线电力传输技术是一种宝贵而便捷的技术,可用于在太空太阳能卫星与卫星之间以及潜在的未来行星际任务之间无线传输电力。这种直接传输可以帮助取代传统的电力储存,减轻卫星的重量,最终降低发射卫星的成本。本文讨论了一颗小型太空太阳能卫星与另一颗运行卫星之间的无线电力传输,随后演示了小型太空太阳能卫星并评估了未来实施的可能性。它将提高性能和使用寿命,尤其是对于使用微波和激光电力传输的小型和立方体卫星。这项技术的开发和演示可以帮助实现太空太阳能卫星向地球传输千兆瓦可再生能源的想法。
凭借月船号和曼加里安号任务的开创性背景,令人兴奋的太空探索在理解宇宙无限性方面即将出现。在地球轨道、月球和行星际任务领域,近几十年来引入了许多新的创新理念。未来的太空探索将为我们提供一个提高生活质量和环境质量的绝佳平台。然而,太空活动的增加给我们带来了新的问题,例如需要管理太空垃圾的有害影响。人们还认识到,大型近地小行星 (NEA) 撞击地球的可能性虽然很小,但确实存在。当今的技术已经足够成熟,可以在需要时制定适当的缓解措施来避免 NEA 撞击灾难。本次演讲概述了一些令人兴奋的未来技术和科学可能性。这些挑战必将激励和吸引新一代印度学生、科学家、工程师、教育工作者、法律专家和管理人员。
航空航天制造/制造能源数值方法 AME320 空气动力学 AME410 增材制造 AME444 应用热力学 AME431 Num Meth 流体力学。 AME321 飞机性能 AME489A 制造技术 微型和纳米设备 AME430 中级热力学 AME463 使用 ANSYS 进行有限元分析 AME323 气体动力学 MSE414 铸件凝固 AME442A HVAC 系统设计 MSE350 MSE 中的数值方法(Python) AME324C 航空航天结构 SIE383 集成制造系统 AME442B 高级 HVAC 系统分析与设计 AME425 航空航天推进 SIE483 计算机集成制造 AME445 可再生能源 AME426 火箭推进 AME446 燃料电池设计 AME427 稳定/控制航空 AME480 核能简介 AME429 行星际任务设计 CE476 开发下一代锂离子电池 AME457 轨道力学和太空探索 MSE 424 应用太阳能材料 SIE452 空间系统工程 SIE456指导基金/航空系统
美国太空部队于 2019 年 12 月成立,其任务是保卫和保护美国在太空的利益。到目前为止,该任务的范围一直局限于近地,大约在地球静止轨道范围(22,236 英里)。随着美国公共和私营部门的新业务延伸到地月空间,美国太空部队的关注范围将扩大到 272,000 英里甚至更远——范围增加了十倍以上,服务量增加了 1,000 倍。美国空军现在在该地区承担着更大的太空领域感知 (SDA) 监视任务,但其当前的能力和架构受到技术和为传统任务设计的架构的限制……随着 NASA 的人类存在从国际空间站延伸到月球表面、地月空间和行星际目的地,随着美国空军组织、训练和装备以提供保护和捍卫地球轨道内外重要美国利益所需的资源,新的合作将成为在这些遥远边境安全运作的关键。[强调添加] [1]
Hamda Al-Ali 是伦敦帝国理工学院帝国等离子推进实验室的博士候选人。她的研究重点是新型高功率等离子推进系统的设计和实验鉴定:球形托卡马克推进器。这项创新技术的灵感来自球形托卡马克和磁约束聚变的工作原理。推进器受益于高推进剂电离和利用率,并与多种推进剂兼容,包括水等分子绿色推进剂。球形托卡马克推进器的无电极设计消除了与电极存在相关的问题,例如电极腐蚀和阴极中毒,从而延长了其使用寿命,同时提供了高比冲,以增加有效载荷质量分数并降低航天器发射成本。这些特性和能力使其成为深空探索任务的有吸引力的候选者。这项技术将实现高效的行星际空间探索,并使星际旅行更加可行。
Gelled and metallized fuels are a class of thixotropic (shear thinning) fuels which improved the performance of rocket and airbreathing systems in several ways: increased rocket specific impulse, increased fuel density, reduced spill radius in an accidental spill, lower volatility during low pressure accidental propellant fires, reduced fuel sloshing, and lower leak potential from damaged fuel tanks (due to higher propellant粘度)。由于所有这些原因,军事系统都寻求凝胶燃料。NASA系统已经通过分析和实验性地研究了燃料燃料,用于月球和火星任务,上阶段,行星际机器人任务和启动车辆应用。提高燃油密度和提高发动机的特定冲动是主要好处。导弹飞行测试,1999年,2001年,具有可刺激的推进剂:氧化剂抑制红色的烟雾硝酸,燃料的胶凝mmh/碳胶合。
摘要 核热推进 (NTP) 使全新类型的深空科学任务能够产生科学回报,而在大多数情况下,传统架构根本无法实现这些回报。NTP 系统可以大大缩短行星际旅行时间,提供大约 2-3 倍(或更多)传统化学推进系统所能提供的质量,或提供这些优势的组合以进一步提高科学回报。目前 NASA 和 DoD 赞助的 NTP 系统计划将使用原型和飞行演示发动机来验证设计,从而使该技术成熟。这些原型发动机将在正确的推力范围内发挥性能,从而允许用作低风险推进级,支持高回报的深空科学任务。此外,与高浓缩铀 (HEU) 燃料相比,使用低浓缩铀 (LEU) 燃料可降低发动机开发、鉴定、验收和发射的成本,并降低与扩散管理相关的风险。
I. 引言 经认证可用于太空的材料具有特殊性能(例如重量轻、抗电离辐射、多功能能力、自愈能力和出色的热稳定性),使得它们可以在电离辐射、极端温度、微陨石和深真空等环境中生存。许多太空应用需要在材料表面涂上涂层以保护材料或改变其性质。用于航天器的材料及其涂层都必须易于使用、排气性低且在太空环境中稳定。然而,尽管具有独特的特性,但太空对于航天器上使用的材料(尤其是其外表面)来说是一个恶劣的环境。由于紫外线和粒子损伤等不同的外部因素,大多数这些材料都会出现一定程度的退化。航天器设计的关键方面之一是热控制系统,其功能是将航天器系统的温度保持在其工作范围内。遥远行星际空间中航天器某一区域的绝对温度
航空航天制造/制造能源数值方法 AME 320 空气动力学 AME 410 增材制造 AME 444 应用热力学 AME 431 数值流体力学 + 传热 AME 321 飞机性能 AME 489A Fab Tech 微型和纳米设备 AME 430 中级热力学 AME 463 使用 ANSYS 的有限元分析 AME 323 气体动力学 AME 442A HVAC 系统设计 AME 324C 航空航天结构 AME 442B 高级 HVAC 系统分析与设计 AME 425 航空航天推进 AME 445 可再生能源系统 AME 426 火箭推进 AME 446 燃料电池设计 AME 427 航空稳定性/控制。交通工具 AME 480 核能简介 AME 429 行星际任务设计 AME 457 轨道力学与太空飞行 AME 454 航天器姿态动力学与控制
在过去的二十年中,使用可穿戴惯性测量单元 (IMU) 来替代传统的人体光学运动捕捉 (OMC) 技术引起了越来越多的关注。与传统的 OMC 相比,IMU 的侵入性较低,并且可以在感兴趣的环境中进行测量,而不仅仅是在人为的实验室空间中。这项工作的主要目标是通过提高 IMU 得出的人体骨骼关节角度的准确性,同时尽量减少使用基于 IMU 的人体运动捕捉系统所需的校准,来推进人机 IMU 运动建模和估计技术。这项工作的次要目标是展示基于 IMU 的运动捕捉系统在特定感兴趣的领域的实际应用:太空服设计和操作。在这个领域,IMU 提供了一种易于理解的方法来理解该领域适合或不适合的人体运动学。在相关环境中捕捉这些运动学可以让工程师更好地设计和维护太空服,以及模拟未来人类行星际太空飞行的操作范例。