*通讯作者:nima.gorji@tudublin.ie摘要 - X射线衍射(XRD)映射是一种非破坏性计量技术,可以通过热机械应力重建在硅晶片上引起的经线的重建。在这里,我们使用基于X和Y方向的一系列线扫描以及同一样品的不同90度旋转的方法绘制了晶圆的扭曲。这些线扫描从晶圆的表面收集摇摆曲线,记录由于表面不良导致的衍射角(ω)偏离了布拉格角。表面经线通过诱导测得的衍射角与参考角度角度(ω -ω0)和摇摆曲线扩展(FWHM)之间的差异来反映XRD测量。通过收集和整合摇摆曲线(RCS)和FWHM从整个表面和晶圆的多个旋转范围扩大,我们可以生成表面函数f(x)的3D地图和角度的不良方向(Warpage)。经线表现出凸形,与文献中报道的光学验证测量值对齐。基于实验室的XRDI有可能在较短的时间内和原位绘制晶圆的翘曲,这可以在同步加速器辐射源中完美地执行。关键字:计量学,硅,扭曲,X射线衍射,晶圆。I.简介
* 通讯作者:nima.gorji@tudublin.ie 摘要 — X 射线衍射 (XRD) 映射是一种非破坏性计量技术,可以重建通过热机械应力在硅晶片上引起的翘曲。在这里,我们使用一种基于在 x 和 y 方向以及对同一样品进行不同 90 度旋转的一系列线扫描的方法来映射晶片的翘曲。这些线扫描从晶片表面收集摇摆曲线,记录由于表面取向错误而偏离布拉格角的衍射角 (ω)。表面翘曲通过引起测量的衍射角和参考布拉格角 (ω − ω0) 之间的差异和摇摆曲线增宽 (FWHM) 反映在 XRD 测量中。通过收集和整合整个表面和晶圆多次旋转的摇摆曲线 (RC) 和 FWHM 加宽,我们可以生成表面函数 f(x) 和角度错位 (翘曲) 的 3D 图。翘曲呈现凸形,与文献中报道的光学轮廓测量一致。基于实验室的 XRDI 有可能在更短的时间内原位绘制晶圆的翘曲图,就像在同步辐射源中完美执行一样。关键词:计量学、硅、翘曲、X 射线衍射、晶圆。I.介绍
在数据预处理后,软件包的核心部分是将角度数据转换为倒数空间。这是在下面使用xRayutilities.permiment -module`详细描述的。实验模块中提供的类提供了帮助执行X射线衍射实验的例程。这包括计算衍射角(如下所述)的方法(如下所述),以对齐晶体样品并在角度和相互空间之间转换数据。对于各种GONIOMETER几何形状,从角到相互空间的转换非常通用。如本文所述,它与线性和区域检测器结合使用特别有用。在标准案例中,用户只需要初始化的例程,该例程预先定义了特定的Goniemeter几何形状,例如流行的四胎和六圈几何形状。
图 S4 . MAPbI 3 和处理过的 MAPbI 3 的 X 射线图。a) 10-35 o 范围内的 X 射线光谱仪。b) 和 c) 分别报告了 14.1 o 处 (110) 峰的缩放图和 MAPbI 3 和处理过的 MAPbI 3 的高斯拟合曲线。根据谢乐方程:d=(0.89*λ)/(FWHM*cosθ),其中 λ 是 X 射线的波长,FWHM 是衍射峰的半峰全高,θ 是衍射角。通过高斯拟合评估的14.1 o 处的峰(110)的半峰全宽分别为后处理前后的钙钛矿的0.170±0.002和0.165±0.001,从而计算出的晶体尺寸分别为82.1±0.2nm和86.1±0.1nm。
摘要:二氧化钛纳米管阵列 (TNA) 纳米系统在药物输送应用中得到了广泛的讨论,它可为靶向癌症治疗中化疗药物的持续释放提供优势。本研究分析了顺铂化疗药物 (CDDP) 在 TNA (CDDP-TNA) 上的包封效率。本研究中使用的锐钛矿 TNA 纳米系统具有 25 θ 和 48 θ 的衍射角。使用主要功能标记酰胺 I 带 (N-H) 确定了 CDDP 在 TNA 上的分布和结合相互作用,并进一步捕获了 CDDP 从 TNA 中的缓释曲线。此外,CDDP-TNA 纳米系统具有良好的亲水性,可以促进 CDDP 从 TNA 纳米系统中有效释放。然而,需要使用聚合物涂层技术开发 CDDP-TNA 纳米系统的控释模型来支持目前的发现,特别是在靶向癌症治疗应用中。
理想的全息三维显示应具有大视角、全彩色、低散斑噪声的特点,但现有策略往往限制了全息三维显示的视角,大大阻碍了其广泛应用。本文提出了一种基于最大衍射调制的大视角全息三维显示系统,该系统的核心包括空间光调制器(SLM)和液晶光栅。我们还提出了一种实现大视角全息三维显示的可行新方案,即将SLM的最大衍射角视为每个像点的有限衍射调制范围,不仅可以获得物体的最大全息图尺寸,还可以利用自主设计的液晶光栅调节二次衍射重建像。更重要的是,提出的最大衍射调制方案使系统的视角扩大到73.4°。该系统在教育、文化和娱乐等领域具有巨大的应用潜力。
图 1 多焦点打印的不同光束分裂方法概览。a 宽带激光束照射衍射光学元件 (DOE) 并衍射成两个衍射级的渲染图。与波长相关的衍射角使入射光束散开。b 渲染图显示多透镜阵列 (MLA),该阵列将入射红色高斯激光束的一小部分聚焦到焦点阵列中。一半的入射激光功率被传输而不会影响焦点阵列。c 入射红色激光束照射 DOE 并在单个光束中衍射的渲染图。使用宏观透镜,每个光束被引导到由单独的微型透镜组成的 MLA 的单个透镜上。这些透镜进一步聚焦每个光束,有效地增加和创建可用于多光子多焦点 3D 打印的焦点阵列(焦点扩展函数仅有微小扩展)。
为了确定基板的切口,XRD 用于精确测量布拉格角(衍射角)的变化,因为基板的旋转角度相对于入射的 X 射线束会发生变化。如果布拉格角随基板的旋转角度而变化,则表明晶圆上有切口。非零晶圆切口会导致 Omega 峰位随着晶圆旋转而增加或减少,因为晶面与晶圆表面并不完全平行。当晶圆旋转到平面朝向 X 射线束倾斜到最大值时,Omega 衍射峰将位于比布拉格角低一个角度,该角度的幅度等于切口的大小。例如,朝向 X 射线束的 1° 切口晶圆的 Omega 峰位将比布拉格角预测的低 1°。同样,如果切口大小相同但相对于光束的方向相反,Omega 峰值的角度将比布拉格角大 1°。当晶圆在光束中旋转时,切口会导致 Omega 峰值从最小值平稳移动到最大值,并且可以观察到 Omega 峰值在这些极限之间的偏移。
在这项研究中,我们使用电化学沉积技术来合成MGSE材料。硝酸镁六水合物(MG(NO 3)2 .6H 2 O)和硒(IV)氧化物(SEO 2)是电化学浴系统的一部分。在2θ角,MGSE材料显示的衍射角为15.669 o。在2θ= 15.669 O,16.452 O,17.426 O,23.489 O和27.592 O时衍射峰分别与002、100、100、100、111、112、112和212的MGSE材料的衍射平面相对应。膜厚度从112.81降低到104.42 nm,MGSE的前体温度升高。随着膜的电导率从1.01增加到1.17 s/m,电阻率从98.09降低到85.42 ohm/cm。在紫外线范围内,膜显示出较高的透射率,超过70%。在50 O C下进行沉积的膜表现出最高的透射率,平均在可见和近红外光谱中为72%。每个沉积膜的反射值超过15%。沉积的膜的能量带隙范围为1.75至2.56 eV。随着温度的升高,能带隙也增加。这项研究中发现的带隙能量范围非常适合在1.75 eV上方吸收太阳能辐射,这是太阳能电池吸收层的理想选择。简介