摘要 - 当前的论文围绕新合成的生态友好的吡唑衍生物的进行,N - ((3,5二甲基-1H-1H-吡唑-1-甲基)甲基)-4-硝基苯胺(L5),作为碳钢(CS)的腐蚀剂(CS)在摩尔羟基含量(CS)中。化学和电化学技术,即减肥测量(WL),电力动力学极化(PDP)和电化学障碍光谱光谱(EIS)均用于评估L5分子的效率,以及量子化学方法。有机化合物被确认为良好的抗腐蚀化合物,在10 -3 m时最大抑制效率(IE%)为95.1%。根据PDP结果,抑制剂L5可作为混合型抑制剂。对温度影响的评估表明,L5在CS上化学吸附。L5在CS表面上的吸附似乎遵循Langmuir模型。扫描电子显微镜(SEM-EDX)和紫外可见度揭示了屏障膜的构成,限制了腐蚀离子进入CS表面的可及性。理论研究
• 绿色氢气需要定价支持 • 至少需要 200 美元/吨的碳税来证明 GH2 成本为 3.9 美元/千克 • 炼油厂、氨气设施、天然气混合将获得收益 • 运输用例将需要更高的碳税 • 由于碳排放率高,钢铁行业的 GH2 将以较低的碳税获得收益
Zeeshan Abid 1,Liaqat Ali 1,Sughra Gulzar 1,Faiza Waad 1,Raja Shahid Ashraf 1,Christian B. div>
炎症是免疫系统对有害刺激(如病原体、受损细胞、有毒化合物或辐射)的反应 1,其特征是发红、肿胀、发热、疼痛和组织功能丧失。 2 如果长期持续,可能会变成慢性,从而导致组织损伤和细胞死亡,引起各种退行性 3 和神经退行性疾病。 4 据世界卫生组织称,慢性炎症是世界上最主要的死亡原因。 5 预计未来 30 年与慢性炎症相关的疾病将继续增加。在世界范围内,五分之三的人死于与慢性炎症相关的疾病,例如中风、慢性呼吸道疾病、心脏病、癌症、肥胖症和糖尿病。 6 – 8
摘要:一系列新系列的噻唑基吡唑啉衍生物(4A - D,5A - D 6A,B,7A - 7A - D,8A,B和10A,B)通过噻唑和吡唑啉部分的组合设计和合成,从关键建筑物的组合组合,从关键建筑物开始,从吡唑啉甲氨基甲甲基甲酰胺(1A)(1A)(1A)(1A)(1A)(1A)。这十八种衍生物的设计按预期的EGFR/HER2双重抑制剂设计。使用乳腺癌MCF-7细胞系评估了开发化合物在抑制细胞增殖中的效率。在与Lapatinib(IC 50 = 5.88 µM)相比,新合成的噻唑基-吡唑啉在新合成的硫基酚基吡唑啉,化合物6a,6b,10a和10b中表现出有效的抗癌活性,IC 50 = 4.08、5.64、3.37和3.54 µm。此外,还以最多的细胞毒性化合物(6a和6b)向EGFR和HER2进行酶法测定,以证明其双重抑制活性。他们揭示了与Lapatinib(IC 50 = 0.007和0.018 m)相比,他们分别揭示了具有IC 50 = 0.024和0.005 µM IC 50 = 0.024和0.005 µm的EGFR的有希望的抑制作用。分别通过在G1和G1/S相处阻止MCF-7细胞系的细胞周期来诱导6A和10A诱导凋亡。对有希望的候选6A和10A的分子建模研究表明,它们与至关重要的氨基酸形成了EGFR和HER2抑制的重要结合,从而支持了体外测定结果。此外,对研究中的化合物进行了ADMET研究预测。
存在电化学生物传感器,包括基于杂交的传感器,DNA-酶传感器和DNA-MODIED电极传感器。无标签的电化学DNA生物传感器使用电化学传感器来检测和测量样品中DNA的存在,而无需检测到可检测的标签。4比传统的DNA生物传感器具有多个优点,包括高灵敏度,特定城市以及检测少量DNA的能力。他们也相对简单且廉价地制造和运营,使它们成为许多应用程序的吸引人选择。5 DNA电化学生物传感器最有前途的应用之一是医学诊断的ELD。6这些传感器有潜力快速,准确地检测到体内与疾病相关的生物标志物(例如蛋白质或核酸)的存在。这可能会允许早期发现疾病,例如癌症,8种传染病和遗传疾病,从而导致更及时和有效的治疗。9除了医疗应用外,DNA电化学生物传感器还具有潜在的用途,例如,这些传感器可用于检测水,土壤或空气中有害化学物质或污染物的存在。10
印记 作为一家联邦企业,GIZ 支持德国政府实现其在可持续发展国际合作领域的目标。出版方:德国国际合作机构 (GIZ) GmbH 注册办事处:德国波恩和埃施博恩 国际 PtX 中心 Potsdamer Platz 10 10785 Berlin, Germany 电话 +49 61 96 79-0 传真 +49 61 96 79-11 15 邮箱 info@ptx-hub.org I www.ptx-hub.org 负责人:Jan-Hendrik Scheyl 和 Johanna Friese (GIZ) 研究人员:Raffaele Piria (生态研究所):介绍和法律与政策背景章节 Christoph Heinemann、Dr. Roman Mendelevitch 和 Susanne Krieger (Oeko 研究所):CDR 2023/1184 章节 Miha Jensterle 和 Saskia Lengning (adelphi):CDR 2023/1185 章节 国际 PtX 中心由以下机构实施德国国际合作协会 (GIZ) GmbH 代表德国联邦经济和气候行动部 (BMWK)。国际 PtX 中心由国际气候倡议 (Internationale Klimaschutzinitiative, IKI) 资助,是对 2020 年德国国家氢能战略的贡献,也是 BMUV 于 2019 年启动的 PtX 行动计划的四大支柱之一。所表达的意见和建议不一定反映委托机构或执行机构的立场。柏林,2023 年 4 月 17 日(2023 年 9 月 29 日更新)
脊椎动物通过两种不同的骨化模式(内膜内和内侧骨术),从三个不同的起源(神经rest,近去中胚层和侧板中胚层)形成其骨骼组织。由于近期中胚层同时会产生膜内和内软骨内骨,因此据认为会引起骨基因生成剂和骨质造基因生成剂。但是,在人类骨骼发育过程中,尚不清楚是什么指导近去中胚层衍生的细胞在不同的骨骼元素中朝着这些不同的命运。要回答这个问题,我们需要实验系统来概括中胚层介导的膜内和内软骨内骨化过程。在这项研究中,我们旨在开发一个基于人类的人体内骨内骨化过程的人类多能干细胞(HPSC)的系统。我们发现,hPSC衍生的近二胚层衍生物的球体培养物会根据刺激产生骨化剂或骨核培养基。前者在小鼠肾胶囊中诱导的膜内骨骼和后者的软骨骨膜。转录pro填充支持以下观点:骨骼特征富含膜内骨状组织。因此,我们开发了一个概括膜内骨术的系统,并通过控制HPSC衍生的副型中胚层衍生物的细胞命运来诱导两种不同的骨化模式。©2023,日本再生医学学会。Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)下的开放访问文章。
基于吡啶的环结构对药理学活性产生强大影响,并且在药物开发过程中经常使用这一事实,这在很大程度上是由于发现了许多广泛的药物。吡啶是一种基本的杂环化学分子,具有与苯相同的六电子系统。随着1960年烟酸流行的增长,吡啶成为一个有趣的目标。吡啶及其衍生物在自然界中广泛分布,在杂环化学中起着至关重要的作用,并且在医学领域中有多种用途。在全球范围内,预计1994年有1.1亿人患糖尿病,预计到2010年将拥有2.39亿人。据报道,1998年有1.35亿人在1995年患有糖尿病,到2025年,有3亿人将患有病情。根据后来的一项研究,全球糖尿病的人数从2000年的1.71亿增加到2030年的3.66亿。根据国际糖尿病联合会的最新预测,到2035年,全世界将有大约6亿人患有糖尿病,高于先前的2030年3.82亿估计。鉴于糖尿病是全球性的大流行,从所有这些数据中可以明显看出,需要新颖的抗糖尿病制剂。到目前为止发表的研究文章中各种吡啶衍生物的抗糖尿病性质是这项综述研究的重点。
摘要:由于发育和成人大脑以及疾病中的活神经茎/祖细胞(NSPC)迫切需要简单和非侵入性鉴定,因为在预后,诊断和神经系统疾病治疗方面的潜在临床重要性,因此在脑肿瘤中(例如脑肿瘤)。在这里,我们报告了一种名为P-HTMI的发光共轭寡硫苯(LCO),用于非侵入性和未扩增的实时检测人类患者衍生的胶质母细胞瘤(GBM)干细胞样细胞和NSPC的实时检测。虽然P-HTMI仅染色了其他细胞类型的一小部分,但在细胞培养中仅添加了P-HTMI,从而在几分钟内有效地检测了啮齿动物和人类的NSPC或GBM细胞。p-HTMI用类似组氨酸/组胺的侧链甲基化的咪唑部分官能化,非甲基化类似物的功能不正常。人类GBM细胞的细胞分选实验表明,P-HTMI标记了与CD271相同的细胞群体,这是一种针对干细胞样细胞的标记和胶质母细胞瘤中迅速迁移的细胞。我们的结果表明,LCO P-HTMI是一种通用的工具,用于立即和选择性检测神经和神经胶质瘤茎和祖细胞。关键字:生物电子学,祖细胞,脑肿瘤,甲基化,p75ntr■简介