尽管重组腺相关病毒(RAAV)是基因疗法的主要平台,但缺乏标准化的计算分析方法和通过长阅读测序评估每个帽子的内容的报告。PACBIO高度准确的长阅读HIFI测序可以对AAV基因组进行全面表征,但需要生物信息学专业知识来分析,解释和比较结果。为了满足这一需求并提高对功能性病毒有效载荷的理解,我们的工作组建立了标准化的命名法,并报告了RAAV矢量的长阅读测序数据。工作组建议涵盖与矢量纯度(全长与零散基因组)和污染物(宿主DNA,质粒DNA)鉴定有关的关键质量属性(CQA)。通过推荐的协议,我们对从头制造的数据分析揭示了全部和部分填充的衣壳的特异性以及部分/截断的载体物种的高分辨率表征。最后,我们提供了实施此
光动力疗法 (PDT) 是一种很有前途的癌症治疗方式。在这里,我们使用正交纳米结构方法(遗传/化学)来设计 M13 噬菌体作为靶向载体,以有效地光动力杀死癌细胞。M13 经过基因重构,在噬菌体尖端展示一种能够结合表皮生长因子受体 (EGFR) 的肽 (SYPIPDT)。重构的 M13 EGFR 噬菌体表现出 EGFR 靶向性,并被过度表达 EGFR 的 A431 癌细胞内化。使用正交方法进行基因展示,然后对 M13 EGFR 噬菌体进行化学修饰,在衣壳表面结合数百个玫瑰红 (RB) 光敏分子,而不会影响 SYPIPDT 肽的选择性识别。 M13 EGFR - RB衍生物在内化后在细胞内产生活性氧,在超低强度白光照射下激活。在M13 EGFR噬菌体的皮摩尔浓度下观察到癌细胞的杀伤活性。
VivoVec:我们专有的体内基因传递技术平台,用于向 T 细胞传递基因。VivoVec™ 颗粒是生物生成的脂质纳米颗粒,大小约为 100 纳米,我们认为这是生物技术应用领域中最先进的脂质纳米颗粒。VivoVec 颗粒由外部脂质包膜包裹,该包膜包裹着约 10 kb 的 RNA 序列,RNA 序列包裹在蛋白质衣壳中。该外壳内包含其他组件,这些组件可将有效载荷信息整合到宿主细胞基因组中。VivoVec 颗粒仅用作人类 T 细胞的信息传递装置 - 颗粒的任何组件都不会完整地整合到靶细胞中。相反,RNA 组件中的信息会转化为 DNA 片段,并整合到靶细胞基因组中。VivoVec 作用机制 VivoVec 颗粒具有多种作用机制:
基因治疗是一种治疗技术,可修饰一个人的基因治疗或治愈疾病。这种修饰可以通过用健康的基因副本代替引起疾病的基因,使疾病的基因失活或将新基因引入体内以帮助治疗疾病。有多种基因疗法治疗,但是一种常见的技术是使用病毒载体,例如腺相关病毒(AAV),将治疗基因传递到人类细胞中进行复制。[2] AAV具有许多有利的特征,包括缺乏致病性,复制无能力,感染非分散细胞的能力以及在特定部位中整合到宿主细胞基因组中的能力。[3]这些有前途的特征导致了它们的进步,早期研究重点是单个AAV变体(血清型)AAV2。从那时起,与AAV2相比,已经发现了新的AAV血清型在某些细胞或组织中提供较高的转导效率。这些独特的细胞偏向主义已导致大量AAV血清型的发展来包装不同的治疗基因来治疗特定疾病。[4]不同的AAV血清型不仅具有不同的细胞向量,而且由于其不同的氨基酸序列和衣壳结构,它们的结构特性和稳定性也有所不同。这些差异使每种AAV血清型都具有独特的熔化温度。[4,5]为了开发有效的AAV疗法,在开发过程中表征AAV的关键属性至关重要。SUPR-DSF在热坡道期间测量了每种血清型的固有荧光,以产生熔体曲线。一个关键属性是AAV CAPSID的热稳定性,可用于血清型识别,优化衣壳配方以及在任何过程更改中进行比较。[6]可以通过在热坡道期间从AAV中的色氨酸残基中监测固有荧光的变化,可以通过差异扫描荧光法(DSF)测量衣壳稳定性。在此应用程序注释中,我们使用SUPR-DSF来测量三种AAV血清型的热稳定性:AAV2,AAV5和AAV6。此外,我们在AAV2和AAV6上进行了浓度稀释系列,以确定最小样品要求。所有样品均以10µl的井体积为10µl,在单个384孔微孔板上一式三份,强调该仪器的高通量可能性。
本演示文稿及其随附的口头评论包含有关我们当前期望的前瞻性陈述。这些前瞻性陈述包括但不限于与下列事项有关的陈述:我们候选产品和工程衣壳的治疗和商业潜力,包括 STAC TM -BBB 释放治疗各种神经系统疾病的巨大潜力的能力,我们专注于表观遗传调控和衣壳工程的计划,开发、获得监管部门批准和商业化治疗某些疾病的持久、安全、有效疗法的潜力以及此类疗法的时机、可用性和成本,使用 ZF、MINT 平台、SIFTER 和其他技术开发持久、安全、有效的疗法和衣壳的潜力,我们从合作中受益并赚取前期费用、开发和商业里程碑和特许权使用费的潜力以及任何此类收益和付款的时机,基因泰克完成临床开发、监管互动、制造和任何由此产生的产品的全球商业化的潜力,辉瑞对 giroctocogene fitelparvovec 计划的持续推进,包括辉瑞完成临床开发、监管互动、制造和任何由此产生的产品的全球商业化的潜力,现有和新的合作及其时间安排、为某些项目寻找合作伙伴或合作者的计划和期望、有关我们财务资源的计划(包括其充足性)以及降低运营费用的计划、我们精简结构的影响和未来潜在的成本削减、我们和我们的合作者进行我们正在进行的和潜在的未来临床试验的预期计划和时间表以及展示我们和我们合作伙伴的临床试验数据和提交监管申请、我们产品候选物的预期进展到后期开发,包括潜在的未来注册试验、我们公司战略的执行、我们的产品线、额外目标的确定以及临床前项目向临床的进展、关键里程碑和催化剂以及其他非历史事实的陈述。这些陈述并非对未来业绩的保证,并且受某些难以预测的风险和不确定性的影响。我们的实际结果可能与所表达的结果存在重大不利差异。可能导致实际结果不同的因素包括但不限于不确定且昂贵的研发过程,包括临床前结果可能无法预示未来临床试验的风险、与宏观经济因素相关的风险和不确定性,包括持续的海外冲突造成的风险,银行倒闭导致银行存款和贷款承诺中断,对全球商业环境、医疗保健系统以及我们和我们合作者的业务和运营造成影响,包括临床试验的启动和运行;研究和开发过程;临床试验时间的不确定性和结果的不可预测性,包括初步或初始临床试验数据是否代表最终临床试验数据,以及最终临床试验数据是否验证候选产品的安全性、有效性和耐用性;临床试验延迟、暂停和搁置对临床试验时间表和候选产品商业化的影响;多个监管机构对候选产品的不可预测的监管审批流程;产品、候选产品和衣壳的制造;已获批准产品的商业化;技术发展可能取代我们和我们的合作者所使用的技术;我们或我们的合作者违反或终止合作协议的可能性;我们可能无法实现合作的预期收益;我们未来资本需求、财务表现和业绩的不确定性,我们缺乏资本资源来充分开发、获得监管部门批准和商业化我们的产品候选物,包括我们确保某些项目合作的能力、我们确保推进临床前项目所需资金的能力和/或及时或完全启动 isaralgagene civaparvovec 的潜在注册试验;以及我们需要大量额外资金来执行我们的运营计划和持续经营,包括我们无法获得推进临床前和临床项目所需资金的风险以及无法持续经营,在这种情况下,我们可能需要完全停止运营、清算全部或部分资产和/或根据适用的破产法寻求保护。我们和我们的合作者无法保证能够开发出具有商业价值的产品。这些风险和不确定性在我们截至 2023 年 12 月 31 日财年的 10-K 表年度报告中有更详细的描述,并由 Sangamo 提交给美国证券交易委员会 (SEC) 的截至 2024 年 3 月 31 日和 2024 年 6 月 30 日的季度 10-Q 表季度报告和未来提交给 SEC 的报告中进行了补充。本演示文稿中包含的前瞻性陈述仅代表截至本演示文稿之日的观点,除适用法律要求外,我们不承担更新此类信息的义务。本演示文稿涉及正在进行临床前和/或临床研究且尚未获得任何监管机构批准上市的试验性产品候选物。目前,这些药物仅供研究使用,且未就其安全性或有效性做出任何陈述,以用于研究目的。任何关于安全性或有效性的讨论仅针对此处提供的具体结果,并不代表监管机构最终认定的安全性或有效性。
本演示文稿及其随附的口头评论包含有关我们当前期望的前瞻性陈述。这些前瞻性陈述包括但不限于与下列事项有关的陈述:我们候选产品和工程衣壳的治疗和商业潜力,包括 STACTM-BBB 释放治疗各种神经系统疾病的巨大潜力的能力,我们计划专注于表观遗传调控和衣壳工程,开发、获得监管部门批准并商业化治疗某些疾病的持久、安全、有效疗法的潜力以及此类疗法的时机、可用性和成本,使用 ZF、MINT 平台、SIFTER 和其他技术开发持久、安全、有效的疗法和衣壳的潜力,我们从合作中受益并获得开发和商业里程碑及特许权使用费的潜力以及任何此类收益和付款的时机,基因泰克完成临床开发、监管互动、制造和任何由此产生的产品的全球商业化的潜力,辉瑞对 giroctocogene fitelparvovec 计划的持续推进,包括辉瑞完成临床开发、监管互动、制造和任何由此产生的产品的全球商业化的潜力,预期从现有和新合作中获得的收入及其时间安排、为某些项目寻求合作伙伴或合作者的计划和预期、isaralgagene civaparvovec 符合 FDA 加速审批计划的可能性,包括在第 1/2 阶段 STAAR 研究中生成的数据是否足以支持任何此类批准;对于是否有更多数据支持 isaralgagene civaparvovec 的潜在 BLA 提交以及提交时间的预期;加快预期审批时间表并比之前预期更快地将 isaralgagene civaparvovec 带给患者的潜力; isaralgagene civaparvovec 预计的注册进展,包括我们寻求潜在合作伙伴的计划、有关我们财务资源的计划(包括其充足性)以及降低运营费用的计划、我们精简结构和未来潜在成本削减的影响、我们和我们的合作者进行正在进行的和潜在的未来临床试验的预期计划和时间表以及展示我们和我们合作伙伴的临床试验数据并提交监管文件、我们候选产品预计的后期开发进展(包括潜在的未来注册试验)、我们公司战略的执行、我们的产品线、其他目标的确定以及临床前项目向临床的进展、关键里程碑和催化剂,以及其他非历史事实的陈述。这些陈述并非对未来表现的保证,并且受难以预测的某些风险和不确定性的影响。我们的实际结果可能与所表达的结果存在重大不利差异。可能导致实际结果不同的因素包括但不限于不确定和昂贵的研发过程,包括临床前结果可能无法预示任何未来临床试验的风险、与宏观经济因素相关的风险和不确定性,包括由于持续的海外冲突、由于银行倒闭导致银行存款和贷款承诺的中断、对全球商业环境、医疗保健系统以及我们和我们的合作者的业务和运营的影响,包括临床试验的启动和运营;研发过程;临床试验的不确定时间和不可预测的结果,包括初步或初始临床试验数据是否代表最终临床试验数据,以及最终临床试验数据是否验证候选产品的安全性、有效性和耐用性;临床试验延迟、暂停和搁置对临床试验时间表和候选产品商业化的影响;多个监管机构对产品候选物的不可预测的监管审批程序;产品、产品候选物和衣壳的制造;已获批准产品的商业化;技术发展可能会取代我们和我们的合作者所使用的技术;我们或我们的合作者违反或终止合作协议的可能性;我们可能无法实现预期的合作效益;我们未来资本需求、财务表现和业绩的不确定性,我们缺乏资本资源来充分开发、获得监管部门批准和商业化我们的产品候选物,包括我们确保某些项目合作的能力、我们确保及时或完全推进临床前项目所需资金的能力;以及我们需要大量额外资金来执行我们的运营计划和持续经营,包括我们无法获得推进临床前和临床项目所需资金的风险,也无法持续经营,在这种情况下,我们可能被要求完全停止运营、清算全部或部分资产和/或根据适用的破产法寻求保护。我们和我们的合作伙伴无法保证能够开发出具有商业可行性的产品。这些风险和不确定性在我们截至 2023 年 12 月 31 日的财年 10-K 表年度报告中有更详细的描述,经 Sangamo 提交给美国证券交易委员会(“SEC”)的截至 2024 年 9 月 30 日的 10-Q 表季度报告和提交给 SEC 的未来报告补充。本演示文稿中包含的前瞻性陈述仅代表本演示文稿之日的观点,除适用法律要求外,我们不承担更新此类信息的义务。本演示文稿涉及正在进行临床前和/或临床研究且尚未获得任何监管机构批准上市的试验产品候选物。它们目前仅限于研究用途,并且对于它们在研究目的下的安全性或有效性不作任何陈述。任何关于安全性或有效性的讨论仅针对此处介绍的具体结果,可能并不代表监管机构最终认定的安全性或有效性。
摘要:由SARS-CoV-2引起的COVID-19大流行已成为全球威胁。了解潜在机制和开发创新治疗方法极为紧迫。G-四链体(G4)是具有不同生物功能的重要非规范核酸结构。研究了SARS-CoV-2基因组中四个假定的G4形成序列(PQS)。其中一个(RG-1)位于SARS-CoV-2核衣壳磷蛋白(N)的编码序列区,已被证实可在活细胞中形成稳定的RNA G4结构。G4特异性化合物,如PDP(吡啶斯他丁衍生物),可以稳定RG-1 G4并通过抑制其在体内和体外翻译显着降低SARS-CoV-2 N的蛋白水平。该结果首次证明 SARS-CoV-2 中的 PQS 可以在活细胞中形成 G4 结构,并且其生物功能可由 G4 特异性稳定剂调节。这一发现将为开发针对 COVID-19 的新型抗病毒药物提供新思路。
病毒在结构上比单细胞微生物更小,更简单,并且它们仅包含一种核酸(无论是DNA或RNA)。由于病毒没有核糖体,线粒体或其他细胞器,因此它们完全取决于其细胞宿主的能量生产和蛋白质合成。它们仅在宿主感染的宿主细胞内复制。与任何微生物不同,在合适的细胞中,许多病毒可以从基因组中繁殖,即单个核酸分子,即单独的核酸是传染性的。在易感细胞外,像细菌孢子一样的病毒颗粒是代谢惰性的。另一方面,在细胞中复制时,它表现出生命的所有特征。新的微生物群称为可过滤病毒。过滤研究表明,病毒颗粒(病毒体)的范围从最小的单细胞微生物(300 nm)的大小到比最大的蛋白质分子(20 nm)大的物体。在较简单的病毒中,病毒粒子由一个核酸分子组成,该核酸被蛋白质涂层包围。衣壳及其封闭的核酸一起构成核素。
抗病毒细胞因子干扰素(IFN)激活IFN刺激基因(ISGS)的表达以建立抗病毒态。粘菌病毒抗性2(MX2/MXB)是一种ISG,它抑制了HIV-1的核进口并与病毒式衣壳和细胞核转运机械相互作用。我们将肌球蛋白轻链磷酸酶(MLCP)亚基MyPT1和PPP1CB作为MX2的正常作用调节剂,与其N末端结构域(NTD)相互作用。我们证明了NTD在14、17和18的位置的丝氨酸磷酸化抑制了MX2抗病毒功能,可防止与HIV-1帽骨和核转运因子的相互作用,并由MLCP逆转。重要的是,NTD丝氨酸磷酸化还阻碍了MX2介导的细胞核货物进口的抑制作用。我们还发现,IFN治疗降低了这些丝氨酸处的磷酸化水平,并概述了稳态调节机制,其中通过磷酸化对MX2的抑制以及MLCP介导的去磷酸化的抑制作用,平衡MX2对MX2对正常细胞与HISATE免疫功能的有害作用平衡,与HIV-1抗HIV-1。
许多病毒通过病毒壳中的纳米通道弹出,这是由高密度基因组堆积产生的内力驱动的。DNA出口的速度受限制分子迁移率的摩擦力控制,但这种摩擦的性质尚不清楚。我们引入了一种方法,通过用光学镊子测量噬菌体Phi29衣壳的DNA出口来探测紧密限制的DNA的迁移率。我们测量了极低的初始退出速度,速度指数增加的制度,主导动力学的随机暂停和较大的动态异质性。使用可变的力量测量提供了证据,表明初始速度由DNA-DNA滑动摩擦控制,这与纳米级摩擦的Frenkel-Kontorova模型一致。我们证实了理论模型预测的弹出动力学的几个方面。暂停的特征表明它与软性系统中“堵塞”的现象相连。我们的结果提供了证据表明DNA-DNA摩擦和堵塞控制DNA出口动力学,但这种摩擦并没有显着影响DNA包装。