背景/概述 Veopoz 是一种补体抑制剂,用于治疗患有 CD55 缺陷型蛋白丢失性肠病 (PLE)(也称为 CHAPLE 病)的成人和 1 岁及以上的儿童患者。作为 FDA 批准的首个 CHAPLE 病疗法,Veopoz 是一种针对补体因子 C5(一种参与补体系统激活的蛋白质)的单克隆抗体。由于接受补体抑制剂治疗的患者中曾发生过危及生命和致命的脑膜炎球菌感染,因此患者必须在首次服用 Veopoz 前至少 2 周根据最新的免疫实践咨询委员会 (ACIP) 建议接种或更新脑膜炎球菌感染疫苗。如果不能在治疗开始前至少两周接种疫苗,包装说明书建议患者应接受预防性抗生素治疗。Veopoz 需要根据体重进行静脉负荷剂量,然后在第 8 天根据体重进行皮下剂量,然后每周进行皮下维持剂量。如果至少 3 周剂量后临床反应不足,可每周增加一次维持剂量。最大维持剂量为每周一次皮下 800 毫克。CHAPLE 病(CD55 缺陷型蛋白丢失性肠病 (PLE))补体过度活化、血管病性血栓形成和蛋白丢失性肠病 (CHAPLE) 病是一种罕见但危及生命的免疫疾病,由 CD55 基因的双等位基因功能丧失突变引起。CD55 通过加速 C3 转化酶(补体级联的关键调节剂)的降解并阻止 C5 裂解为 C5a 和 C5b 来抑制早期补体活化,从而阻止膜攻击复合物(C5b-C9,一种介导细胞裂解的结构)的形成。CD55 突变导致补体系统过度活化,从而损害上消化道的血管和淋巴管并导致循环蛋白质的损失。患者可能会出现腹痛、腹泻、呕吐、吸收不良、水肿、生长迟缓、肠淋巴管扩张、感染,甚至可能危及生命。
– 无脾、补体缺乏、使用补体抑制剂和 HIV 感染 – 一些微生物学家 – 疫情爆发期间的暴露 – 前往高流行地区 – 大学一年级学生(如果之前未在年龄 ≥ 16 岁时接种过疫苗)
更新理由:• 为补体抑制剂添加了 ravulizumab (Ultomiris®)。• 更新以澄清脑膜炎球菌疫苗不定期提供给医护人员。• 更新了 7 岁及以上使用补体抑制剂的个体的加强剂量建议。• 更新了特定年龄组的时间表和剂量之间的最小间隔。
阵发性夜间血红蛋白尿 (PNH) 是一种罕见的、危及生命的溶血性贫血;PNH 的发病率为每年每 100,000 人 0.1 至 0.2 人。PNH 是由细胞溶解补体级联中的后天遗传缺陷引起的,该缺陷使红细胞 (RBC) 易受溶解。补体对 PNH RBC 的慢性破坏会导致严重的疾病。夜间溶血增加(据推测是由血液 pH 值降低和补体系统激活引起的)会导致特征性的晨尿带血。PNH 患者过度或持续的血管内溶血会导致贫血、血红蛋白尿和与血浆游离血红蛋白存在相关的并发症(例如血栓形成、腹痛、吞咽困难、勃起功能障碍和肺动脉高压)。 PNH 还可能发生血管外溶血,导致肝脏和脾脏网状内皮细胞破坏。补体抑制剂用于治疗 PNH,以减少溶血和输血需求。
组分 (C) 5b – 9(膜攻击复合物 [MAC])在驱动肾脏损伤中起主导作用。12 补体激活标志物可以识别出可能发展为严重肾功能损害的 IgA 肾病患者。13 因此,补体蛋白是 IgA 肾病的潜在治疗靶点。Cem-disiran 是一种正在研究的皮下给药 RNA 干扰 (RNAi) 疗法,正在开发用于治疗补体介导的疾病。14 Cem-disiran 由与 N-乙酰半乳糖胺配体共价连接的小干扰 RNA 组成,旨在降低肝脏补体组分 5 (C5) mRNA。C5 是形成 MAC 之前补体级联中的最后一个蛋白质;抑制 C5 的产生有望减少过敏毒素 C5a 和 MAC 的产生,从而减少 IgA 肾病中的细胞损伤和组织炎症,无论补体级联是由经典、替代还是凝集素途径激活。15 在第 1 阶段研究中,Cemdisiran 显示出快速而强大的 C5 降低作用,且不良事件很少。14 我们介绍了第 2 阶段研究结果,评估了 cemdisiran 对尽管接受标准治疗但每天排泄 0.1 克蛋白质的 IgA 肾病成人患者蛋白尿的影响。
纤维化与杜氏肌营养不良症 (DMD) 中的肌肉功能受损有关。我们报告了对营养不良患者和小鼠组织的观察结果,支持一种解释 DMD 中纤维化的模型,该模型依赖于补体和 WNT 信号通路之间的串扰以及两种细胞类型的功能相互作用。纤维脂肪形成祖细胞和巨噬细胞在发炎的营养不良肌肉中繁殖,通过分泌 C 1 补体复合物的不同亚基充当 WNT 活性的组合源。反应性细胞(如纤维脂肪形成祖细胞)中 WNT 信号的异常激活会导致纤维化。事实上,在 DMD 小鼠模型中,药物抑制 C 1 r/s 亚基可减轻 WNT 信号通路的激活,降低纤维脂肪祖细胞的纤维化特征,并改善营养不良表型。这些研究为肌营养不良症纤维化的分子和细胞机制提供了新的见解,并为新的治疗策略开辟了道路。
EMA 批准在 AAV 中使用 Avacopan 是基于 III 期安慰剂对照 ADVOCATE 试验(Avacopan spc,附录 1)的结果。该试验将 330 名新诊断或复发的 GPA 或 MPA 患者随机分组,这些患者接受利妥昔单抗或环磷酰胺(随后接受硫唑嘌呤)治疗,每天两次服用 30 毫克 Avacopan,持续 52 周,或接受与 RAVE 研究类似的逐渐减量计划的 CS,持续 20 周。在试验入组前和试验期间,允许静脉脉冲 CS 的剂量最多为 3 克。在筛选期间,两组都允许使用非研究提供的 CS,但在进入试验前必须将其减量至 20 毫克或更少的泼尼松当量,并且必须在 avacopan 组的第 4 周结束前停药。在病情恶化或复发的情况下,允许静脉脉冲 CS。值得注意的是,两个研究组的患者因各种原因接受了开放标签 CS。avacopan 组和泼尼松组口服和静脉注射糖皮质激素的平均总泼尼松当量剂量为 1676 毫克(相当于每位患者每天 5 毫克),泼尼松组为 3847 毫克(相当于每位患者每天 13 毫克),总 CS 暴露量减少了 56%。与 avacopan 组相比,对照组 CS 相关有害影响的发生率更高。对照组和 avacopan 组之间的其他主要不良事件发生率没有差异。
在体外•使用CD55和CD59缺乏的RBC在体外评估OMS906的效力,以模仿PNH的生理效应(IE,血管内和血管外血液溶解)•健康的人类供体供体供体供体供应者RBC与抑制性CD55和CD59抗体的疾病相反,然后使用抑制性CD55和CD59抗体(CD59抗体)进行处理( containing OMS906, anti-C5 IgG4 mAb, or an isotype mAb control − CFD-depleted serum was spiked with recombinant human pro-CFD to measure the effect of MASP-3 on conversion of pro-CFD to mature CFD • The potency of OMS906, expressed as the IC 50 , was assessed based on prevention of hemolysis of the PNH-like RBCs in vitro − Lysis was quantified by measuring hemoglobin released into sample supernatants using spectrophotometric absorbance • The effect of OMS906 on inhibition of opsonization was assessed based on deposition of C3b cleavage products iC3b and C3d on the PNH-like RBCs − Opsonization was quantified by measuring fluorescently-labeled C3b-positive or C3d-positive cells relative使用体内流式细胞术的实时RBC总数•使用crry - / - 小鼠的RBC评估了OMS906对鼠rbcs易于快速清除的体内效应,该效应缺乏啮齿动物特异性补体调控蛋白,该蛋白质阻止了替代途径•C57BL/6J男性毛因菌株,•C57BL/6J男性毛因裂解 - / - RBCS并通过皮下注射接收OMS906或同种型MAB控制,或通过腹膜内注射抗CFB MAB或抗C5 MAB•每天采集血液样本,直到第14天,剩余的CRRY数量 - /-RBC通过流式网>> rbcs进行测量。
Diaialoganglioside GD2在包括神经母细胞瘤和黑色素瘤在内的各种人类肿瘤类型中表达。3F8结合后,对GD2的鼠单克隆抗体(MAB),神经母细胞瘤和某些黑色素瘤对通过人的补体杀死很敏感,而某些甲虫则不是。研究了补体介导的细胞毒性中这些差异的基础机制,将补体不敏感的黑色素瘤细胞系与衰减加速因子(DAF)的表达进行了比较,衰减加速因子(DAF),一种膜调节蛋白,一种保护血细胞,可保护血液细胞免受自动补体攻击。虽然DAF在神经母细胞瘤中是无法检测的,但它以补充不敏感的素瘤存在。当DAF的功能被抗DAF MAB阻断时,C3的摄取和补体介导的液位黑色素瘤系的裂解显着增强。f(ab')2个碎片在增强裂解方面与完整的抗DAF mAb一样有效。DAF阴性和DAF阳性黑色素瘤细胞系对Cobra毒液因子处理的血清对被动裂解具有相当抗性。数据表明,在某些肿瘤中,DAF活动解释了它们对涉及杀害的抵抗力。通过阻止DAF功能来使这些细胞对这些细胞的敏感性的能力可能暗示免疫疗法。
补体系统是先天免疫系统的一部分。主要称为导致膜攻击复合物(MAC)形成的过程,该过程破坏了靶细胞触发细胞裂解和死亡的细胞膜,但补体系统具有额外的效应子功能,例如靶向细胞的分配和促进渗透量(1,2)。止血是导致受伤血管出血的过程。它是通过三个主要步骤开始的:血管收缩,血小板塞的形成和纤维凝块形成由凝结级联反应介导的(3)。补体系统和凝结级联反应依赖于丝氨酸蛋白酶的顺序激活,并要求在露天或改变的表面被激活,并为外部威胁提供先天的防御。总结了许多评论(4-6)中,补体和凝结系统之间存在广泛的串扰,这并不奇怪,因为它们具有共同的进化起源(7)。For example, complement components such as C3, C4, C5a and factor B (FB) are found in thrombi ( 8 ) and we previously showed that mannose-binding lectin (MBL) of the lectin pathway (LP) of complement activation co-localises with activated platelets and von Willebrand factor (vWF) in a microvascular bleeding model ( 9 ).MBL相关的丝氨酸蛋白酶1和2(MASP-1,MASP-2)的凝集素途径已显示与活化的血小板结合(10)和C3结合VWF(11)。补体和凝结级联反应的激活也导致血细胞和内皮细胞的激活,结果此外,已显示替代补体途径(AP)在锚定在内皮细胞上的超大VWF多聚体上组装和激活(12)。我们先前表明MASP-1可以激活凝血酶原(13),并且对MBL和MASP-1的抑制会在微血管出血模型中降低损伤部位的纤维纤维形成和/或血小板激活(9)。