在阳米尔斯仪表上的欧几里得凯奇表面表面表面含有直接经验意义的仪表对称性组通常被认为是g des = g des = g i /g∞0,其中g i是一个具有边界的符号对称性和g∞0是其由构成理论构成的构成的构成的转化。这些群体分别被识别为渐近变化的仪表变换,以及渐近身份的量规变换。在Abelian案例中G = U(1)然后将其标识为全球仪表对称组,即u(1)本身。然而,在数学上还是概念上,这一说法的已知派生都是不精确的。我们针对阿贝里安和非亚伯仪理论严格得出了物理量规组。我们的主要新观点是,限制g i的要求不仅源于能量的有限,而要依赖于Yang-Mills理论的Lagrangian的要求,以在切实的捆绑包上定义以配置空间。此外,我们解释了为什么商恰好由每个同型类别的全球仪表组的副本组成,即使各种规范变换显然具有不同的渐近速率收敛速率。最后,我们在框架中考虑了Yang-Mills-Higgs理论,并表明渐近边界条件在不间断和破碎的相处有所不同。1
摘要:背景:展示了人工智能(AI)驱动的自动病史采集系统与人工智能驱动的鉴别诊断列表对医生诊断准确性的有效性。然而,考虑到人工智能驱动的鉴别诊断列表的负面影响,例如遗漏(医生拒绝人工智能建议的正确诊断)和犯错(医生接受人工智能建议的错误诊断),应评估不带人工智能驱动的鉴别诊断列表的人工智能驱动的自动病史采集系统对医生诊断准确性的有效性。目的:本研究旨在评估带或不带人工智能驱动的鉴别诊断列表的人工智能驱动的自动病史采集系统对医生诊断准确性的有效性。方法:这项随机对照研究于 2021 年 1 月进行,纳入了 22 名在大学医院工作的医生。参与者需要阅读 16 个临床案例,其中 AI 驱动的真实患者病史为每个病例生成最多三个鉴别诊断。参与者被分为两组:有和没有 AI 驱动的鉴别诊断列表。结果:两组的诊断准确率没有显著差异(分别为 57.4% 和 56.3%;p = 0.91)。在 AI 生成的列表中包含正确诊断的案例对医生的诊断准确性显示出最大的积极影响(调整后的优势比 7.68;95% CI 4.68–12.58;p < 0.001)。在使用 AI 驱动的鉴别诊断列表的组中,15.9% 的诊断是遗漏错误,14.8% 是犯错错误。结论:医生使用人工智能驱动的自动化病史的诊断准确性在有和没有人工智能驱动的鉴别诊断列表的组之间没有差异。
“如何度过人工智能寒冬” James Luke 博士,IBM 杰出工程师和首席发明家 如果您不知道,人工智能寒冬是指在人们对人工智能的期望达到顶峰之后出现的低迷,资金枯竭,专业人士对其潜力嗤之以鼻。70 年代末 80 年代初发生过一次人工智能寒冬,十年后又发生过一次——最后一次是在 1992 年。在这样的“寒冬”里,人们对人工智能嗤之以鼻并不罕见——James Luke 深情地回忆起 IBM 的一位(至今仍是)高管在他职业生涯早期告诉他,“如果你想在公司有所成就,就离开人工智能”。但即便是 Luke 也承认,考虑到挑战的规模,出现怀疑者并不奇怪。Luke 在会议开幕式主旨演讲中表示:“我们试图用人工智能重塑人脑的智能,这是人类面临的最大工程挑战。” “它比曼哈顿计划、比大型强子对撞机还要大——但我们通常只以两三个人组成的团队进行研究。”尽管如此,他仍敦促与会代表对人工智能保持积极态度,因为如果以正确的方式对待,人工智能可以发挥作用并带来巨大的机遇。那么,什么才是“正确的方式”?卢克说,人工智能有效用例的最佳例子之一仍然是 1997 年超级计算机深蓝与世界冠军国际象棋选手加里卡斯帕罗夫之间的著名比赛。深蓝曾在 1996 年挑战卡斯帕罗夫并失败,而它的架构师 IBM 决心不再重蹈覆辙。IBM 工程师寻求另一位国际象棋大师的帮助来构建深蓝,并对计算机进行编程,使其能够预测未来 14 步。从本质上讲,它复制了人类的能力,但通过巨大的规模进行了扩展。尽管“深蓝”赢得了 1997 年的锦标赛,但它的局限性也暴露无遗。当时参与打造它的大师说:“深蓝每秒评估两百万步,我评估三步。但我怎么知道该评估哪三步?”卢克说,这句话完美地概括了人工智能的缺点:“我们还没有解决这个问题,我们不明白大师如何知道该评估哪三步。这是智能和人工智能之间差异的一个很好的例子。人工智能不会比人类更好——人类脑细胞比电子神经元复杂得多。”他补充说,人工智能经常被认为比人类智能更好,因为它不会忘记东西。但卢克认为,人类忘记的能力是智能的一部分,因为忘记可以帮助我们“概括、实验和学习”——更不用说不会被我们做过的所有可耻的事情所打败。卢克分享了三条让人工智能发挥作用的建议: