茶是世界上最广泛的饮料之一。它是生物活性化合物的丰富来源,包括epigallocatechin Gallate(EGCG),鲁丁蛋白,槲皮素,食道酸和单宁酸,它们已被广泛研究,以实现其潜在的健康益处。茶厂(Camellia sinensis)属于Camellia L.属和家族剧院。与其他植物相比,茶厂的次要代谢物不仅具有独特的治疗质量,而且使人类健康受益。作为重要的经济植物,已经在许多领域进行了茶,包括健康,粮食生产和文化。这些代谢产物具有抗氧化剂,抗菌和抗炎性特性,这可能有助于降低慢性疾病的风险,例如心血管疾病,癌症和神经退行性疾病。茶厂是多年生和
使用CSF-BAM Alexander H. Pearlman 1,2,3,4,*,Yuxuan Wang 1,2,3,4,*,*,Anita Kalluri 5,Anita Kalluri 5,Megan Parker 5,Joshua D Cohen 1,2,3,3,3,4,JONATH 3,4,JONATH 3,4,JONTHEL,JON 3,乔迪娜·林肯·托罗埃拉1,2,3,4,5,Yuanxuan Xia 1,2,3,4,5,Ryan Gensler 5,Melanie Alfonzo Horwitz 5,John Theodore 5,John Theodore 5,Lisa Dobbyn 1,2,3,4 1,2,3,4,Maria Popoli 1,2,3,3,3,4,Janine Ptan,Janniim ptan,NAT 1,2,2,4,NAT 1,2,4,NAT NAT NAT NAT NAT NATNAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT NAT 1,2,3,4 , Kathy Judge 1,2,3,4 , Mari Groves 5 , Christopher M. Jackson 5 , Eric M. Jackson 5 , George I. Jallo 7 , Michael Lim 8 , Mark Luciano 5 , Debraj Mukherjee 5 , Jarushka Naidoo 9 , Sima Rozati 10 , Cole H. Sterling 1,4 , Jon Weingart 5 , Carl Koschmann 11 , Alireza Mansouri 12 , Michael Glantz 12 , David Kamson 4,13 , Karisa C. Schreck 4,13 , Carlos A. Pardo 13 , Matthias Holdhoff 4 , Suman Paul 1,2,4 , Kenneth W. Kinzler 1,2,3,4 , Nickolas Papadopoulos 1,2,3,4 , Bert Vogelstein 1,2,3,4,14 , Christopher Douville 1,2,3,4,#,Chetan Bettegowda 1,2,3,4,5,#
一种新型DNA分离系统的关键蛋白StbA的DNA结合域的表征等《分子生物学杂志》,2022,434(19),第167752页。 10.1016/j.jmb.2022.167752。 hal-03837249
铅卤化物钙钛矿纳米晶体是经典和量子光发射的有前途的材料。要了解这些出色的特性,需要对带边的激子发射进行彻底的分析,这是由于扩大效果而在整体和室温研究中无法达到的。在这里,我们报告了中间量子限制方案中单个CSPBBR 3 NC的光致发光的低温温度研究。我们揭示了观察到的光谱特征的尺寸依赖性:亮点激子能量分裂,TRION和BIEXCITON结合能以及光学声子复制频谱。此外,我们表明明亮的三重能量分离与纯交换模型一致,并且可以简单地考虑发射偶极子和发射状态的种群的方向来合理化所记录的极性特性和光谱。
大蒜是一种重要的香料作物,用于调味食品,并且在传统医学中有悠久的使用历史。然而,黑霉菌是一种常见的真菌疾病,影响大蒜,这是由曲霉感染引起的。这种疾病显着影响大蒜的产生和质量。因此,本研究旨在评估新型绿色合成氧化锌纳米颗粒(ZnO-NP)对大蒜中黑色霉菌疾病的抗真菌活性。使用环保绿色合成技术用于使用耐锌细菌serratia sp。产生ZnO-NP。(ZTB24)。在本研究中,实验分析。UV-VIS光谱在380 nm处,透射电子显微镜(TEM),动态光散射(DLS)和ZETA电势证实了Serratia sp的绿色ZnO-NP的成功生物合成。中毒的食物技术和孢子发芽测试揭示了ZnO-NPS在体外条件下对尼日尔的抗真菌活性。通过从感染的大蒜鳞茎中分离出引起疾病的尼日尔真菌的存在,并使用转录序列(ITS)rDNA测序在分子水平上进一步鉴定出来。ZnO-NPS在250μgml-1浓度的ZnO-NP下,菌丝体的生长降至90%,孢子发芽为73%。在大蒜的最终治疗中,在不同浓度(50、100、250和500 ppm)的体内进一步使用了ZnO-NP。在7天和14天后评估了疾病严重程度的百分比,在接种前方法中,500 ppm的ZnO-NP的应用表现出0%的疾病严重程度,而与对照组相比,在接种后14天后,在7天和14天后,黑霉病疾病的疾病严重程度记录为1.10%和0.90%。因此,使用绿色技术合成的ZnO-NP的抗真菌活性为开发天然杀菌剂的开发铺平了道路,为传统化学控制方法提供了可持续可再生的替代方案。
kappaphycus alvarezii(doty)doty ex silva是一种广泛培养的针对角叉菜胶多糖的红色海藻,也是有价值的色素性脂素(PE)的潜在来源。因此,本研究的目的是从K. alvarezii中提取植料,评估其抗菌,抗氧化剂和抗癌活性,并确定其未来治疗应用的生物医学潜力。发现从K. Alvarezii提取的植物素化色素的蛋白质含量为69.84%,显示出极好的抗菌活性,抗杀菌性的oxytoca和Proteus mirabilis,最小抑制区为11 mm。使用总抗氧化剂,过氧化氢清除,减少功率,DPPH和ABTS测定法显示出显着的体外抗氧化活性。此外,颜料对人肺癌细胞系表现出有效的细胞毒性,IC 50值为131.7
摘要 - 在图形处理单元(GPU)上执行的深神经网络(DNN)的可靠性评估是一个具有挑战性的问题,因为硬件体系结构非常复杂,软件框架由许多抽象层组成。虽然软件级故障注入是评估复杂应用程序可靠性的一种常见且快速的方法,但它可能会产生不切实际的结果,因为它对硬件资源的访问有限,并且采用的故障模型可能太幼稚(即单位和双位翻转)。相反,用中子光束注射物理断层提供了现实的错误率,但缺乏故障传播可见性。本文提出了DNN故障模型的表征,该模型在软件级别结合了中子束实验和故障注入。我们将运行一般矩阵乘法(GEMM)和DNN的GPU暴露于梁中子,以测量其错误率。在DNNS上,我们观察到关键错误的百分比可能高达61%,并表明ECC在减少关键错误方面无效。然后,我们使用RTL模拟得出的故障模型进行了互补的软件级故障注入。我们的结果表明,通过注射复杂的断层模型,Yolov3的误导率被验证为非常接近通过光束实验测得的速率,该速率比仅使用单位倒换的断层注射测量的频率高8.66倍。
摘要:研究给定物种的多样性可以为自动启动培养物的发展提供线索。然而,很少有研究集中在乳酸杆菌delbrueckii菌株的种内多样性上,这是一种对乳制品行业技术上重要的乳酸细菌。出于这个原因,分离并表征了来自圣尼克尔保护的原产地名称(PDO)区域的乳酸杆菌菌株。遗传多样性是基于核心基因组系统发育重建和pangenome分析确定的,而表型评估涵盖了蛋白水解和挥发性复合生产潜力。总共15 L. delbrueckii ssp。乳酸化获得了独特的新菌株。遗传分析和进一步的蛋白水解活性测量表明,这些圣奈克菌株之间的变异性较低,而在Delbrueckii SSP中观察到了实质性的遗传变异性。乳酸亚种的整体。菌株之间的挥发性化合物纤维略有不同,一些菌株产生的挥发性化合物可能会引起奶酪伏鸟的发育特别感兴趣。与总体亚种的多样性相比,圣奈克菌株之间的遗传多样性相对较小,它们的独特特征和与公开可用的基因组的明显分化将其定位为开发自卫星启动培养奶酪生产的有前途的候选者。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
1 波尔多大学,CNRS,I2M 波尔多,B – timement A11,351 解放路,CEDEX,33405 塔朗斯,法国; clemailhe@gmail.com 2 替代能源合作研究中心(CICenergiGUNE)、巴斯克研究与技术联盟(BRTA)、阿拉瓦科技园区,01510 Vitoria-Gasteiz,西班牙; sdoppiu@cicenergigune.com (SD); jldauvergne@cicenergigune.com (J.-LD); ssantos@cicenergigune.com (SS-M.); epalomo@cicenergigune.com (EPdB) 3 TECNALIA,巴斯克研究与技术联盟 (BRTA),圣塞瓦斯蒂安科技园区,20009 Donostia-San Sebastián,西班牙 4 应用物理学 II,巴斯克大学 UPV-EHU,48940 Leioa,西班牙 5 Amplitude,11 Avenue de Canteranne,Cité de la Photonique,Bâtiment MEROPA,33600 Pessac,法国; alexandre.godin@amplitude-laser.com 6 波尔多大学,CNRS,波尔多 INP,LCPO—UMR5629,16 Avenue Pey Berland,CEDEX,33607 Pessac,法国; guillaume.fleury@u-bordeaux.fr 7 智利天主教大学工程学院建筑学院,Av. Libertador Bernardo O'Higgins 340,圣地亚哥 8331150,智利; frouault@uc.cl 8 Ikerbasque,巴斯克科学基金会,48013 毕尔巴鄂,西班牙 * 通讯地址:marie.duquesne@enscbp.fr