大脑解码技术为解释神经活动的解释以重现思想,情感和运动的方式铺平了道路。Tang等。 (2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。 在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。 此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。 通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。 相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。Tang等。(2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。
尽管[插入强迫]对[插入偏置过程]的影响的扩增将发生在数十年的时间尺度上,但与[插入有偏见的过程]本身相关的固有时间尺度通常是在小时的顺序上。因此,原则上应该可以通过在短期天气预测模式下研究此类模型的性能来评估[插入过程]的异常值是否现实。
从网络数据中学习可概括的视觉表示已为机器人技术带来了令人鼓舞的结果。然而,预循环方法着眼于预训练2D表示,是应对闭塞的优势,并在复杂的3D场景中准确地将对象定位。同时,3D代表学习仅限于单对象。为了解决这些局限性,我们引入了一个名为Sugar的机器人技术的新型3D预训练框架,该框架通过3D点云捕获对象的语义,几何和负担性能。我们强调了3D表示学习中混乱场景的重要性,并自动构建一个受益于模拟中无需成本监督的多对象数据集。Sugar采用一种多功能变压器的模型来共同解决五个预训练任务,即用于语义学习的跨模式知识蒸馏,以掩盖点建模,以取消几何结构,掌握姿势合成以进行对象负担,3D实例分割和引用表达地面以分析杂乱无章的场景。我们对三个与机器人相关的任务进行了学习的代表,即零射击3D对象识别,引用凸起的接地和语言驱动的机器人操作。实验结果表明,糖的3D表示优于最先进的2D和3D表示。
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过过滤动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描中学习此表示,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。
2025 年 1 月 5 日——安全措施得到加强。曼尼普尔邦的 Kangpokpi 区,SP ...陆军表示,“在执行任务时。班迪波拉区,一辆车...
最近,密集的潜在变量模型已显示出令人鼓舞的结果,但是它们的分布式和潜在的代码使它们降低了易于解释,并且对噪声的影响较低。另一方面,稀疏表示更为简约,提供了更好的解释性和噪声稳健性,但是由于涉及的复杂性和计算成本,很难实现稀疏性。在此过程中,我们提出了一种新颖的无监督学习方法,以利用逐渐稀疏的尖峰和平板分布作为我们的先验,以在发电机模型的潜在空间上强化稀疏性。我们的模型由自上而下的发电网络组成,该网络将潜在变量映射到观测值。我们使用最大似然采样来推断发电机后方向的潜在变量,并且推理阶段的尖峰和平板正则化可以通过将非信息性潜在维度推动到零来引起稀疏性。我们的实验表明,学到的稀疏潜在表示保留了大多数信息,我们的模型可以学习解开的语义,并赋予潜在代码的解释性,并增强分类和denosing任务的鲁棒性。
我们使用两种互补视觉方式探索视觉增强学习(RL):基于框架的RGB凸轮和基于事件的动态视觉传感器(DVS)。iSTING多模式视觉RL方法在有效提取与任务相关的信息时经常遇到挑战。为了解决这个问题,我们提出了用于视觉RL的分解多模式表示(DMR)框架。它将输入分为三个不同的组成部分:与任务相关的效果(共同功能),RGB特异性噪声和DVS特异性噪声。共同创作表示与RL任务相关的两种模式中的完整信息;这两个噪声组件都受到数据重构损失以避免信息泄漏的约束,与共同创作形成对比,以最大程度地差异。广泛的经验表明,通过明确分开不同信息的类型,我们的方法可实现与最先进的方法相比,实质性改善的政策绩效。
为了处理现实世界中的噪声数据和不完整信息,我们将机器学习的通用性和抗噪性与知识表示和符号推理的严谨性和可重用性相结合,构建能够灵活应对未知情况的强大人工智能。我们还旨在将AI应用到以前从未应用过的领域,例如估计COVID-19的基因网络,预测辐射下的细胞动态以及基于媒体数据分析行为。
解码人脑一直是神经科学家和人工智能研究人员的标志。重新构建来自脑电脑脑电图(EEG)信号的视觉图像,由于其在脑部计算机接口中的应用,引起了人们的极大兴趣。本研究提出了一种两阶段的方法,其中第一步是获得脑电图衍生的特征,以稳健地学习深度代表,然后将学习的表示形式用于图像产生和分类。我们使用具有监督和对比度学习方法的深度学习体系结构在三个不同的数据集中进行了特征提取管道的普遍性。我们已经执行了零摄影的脑电图分类任务,以进一步支持概括性索赔。我们观察到,与脑电图和图像之间的联合代表学习相比,在单峰设置中仅使用脑电图数据来学习一个单独使用脑电图数据的近距离线性分离的视觉表示。最后,我们提出了一个新颖的框架,将看不见的图像转换为脑电图空间,并以近似值重建它们,从而展示了来自EEG信号的图像重建潜力。我们提出的来自EEG的图像合成方法显示了62。9%和36。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。