机器人及时通过传感器数据构建持久,准确且可操作的模型的能力是自主操作的范围。在将世界表示为点云可能足以进行本地化时,避免障碍物需要更密集的场景表示形式。另一方面,更高级别的语义信息通常对于分解必要的步骤来完成一项复杂的任务,例如烹饪,自主是至关重要的。因此,迫在眉睫的问题是,手头机器人任务的合适场景表示是什么?这项调查提供了对关键方法和框架的全面回顾,这在机器人空间感知领域推动了进步,并特别关注了代表的历史演变和当前的趋势。通过将场景建模技术分类为三种主要类型(公式,公式和指标 - 语言流行),我们讨论了空间启示框架正在从构建世界的纯几何模型转变为更高级的数据结构的方式,这些模型包括更高级别的概念,例如对象实例和位置的概念。特别重点是实时同时定位和映射(SLAM)的方法,它们与深度学习的集成,以增强了鲁棒性和场景的理解,以及它们处理场景动态性的能力,作为当今驾驶Robotics研究的一些最热门的主题。我们在讨论方面的挑战和未来的研究方向的讨论中进行了结论,以建立适合长期自治的强大而可扩展的空间感知系统。
从网络数据中学习可概括的视觉表示已为机器人技术带来了令人鼓舞的结果。然而,预循环方法着眼于预训练2D表示,是应对闭塞的优势,并在复杂的3D场景中准确地将对象定位。同时,3D代表学习仅限于单对象。为了解决这些局限性,我们引入了一个名为Sugar的机器人技术的新型3D预训练框架,该框架通过3D点云捕获对象的语义,几何和负担性能。我们强调了3D表示学习中混乱场景的重要性,并自动构建一个受益于模拟中无需成本监督的多对象数据集。Sugar采用一种多功能变压器的模型来共同解决五个预训练任务,即用于语义学习的跨模式知识蒸馏,以掩盖点建模,以取消几何结构,掌握姿势合成以进行对象负担,3D实例分割和引用表达地面以分析杂乱无章的场景。我们对三个与机器人相关的任务进行了学习的代表,即零射击3D对象识别,引用凸起的接地和语言驱动的机器人操作。实验结果表明,糖的3D表示优于最先进的2D和3D表示。
量子计算已成为一个新兴领域,可能彻底改变信息处理和计算能力的格局,尽管物理上构建量子硬件已被证明是困难的,而且当前嘈杂中型量子 (NISQ) 时代的量子计算机容易出错且其包含的量子比特数量有限。量子机器学习是量子算法研究中的一个子领域,它对 NISQ 时代具有潜力,近年来其活动日益增多,研究人员将传统机器学习的方法应用于量子计算算法,并探索两者之间的相互作用。这篇硕士论文研究了量子计算机的特征选择和自动编码算法。我们对现有技术的回顾使我们专注于解决三个子问题:A) 量子退火器上的嵌入式特征选择,B) 短深度量子自动编码器电路,以及 C) 量子分类器电路的嵌入式压缩特征表示。对于问题 A,我们通过将岭回归转换为量子退火器固有的二次无约束二元优化 (QUBO) 问题形式并在模拟后端对其进行求解来演示一个工作示例。对于问题 B,我们开发了一种新型量子卷积自动编码器架构,并成功运行模拟实验来研究其性能。对于问题 C,我们根据现有技术的理论考虑选择了一种分类器量子电路设计,并与相同分类任务的经典基准方法并行进行实验研究,然后展示一种将压缩特征表示嵌入到该量子电路中的方法。
解码人脑一直是神经科学家和人工智能研究人员的标志。重新构建来自脑电脑脑电图(EEG)信号的视觉图像,由于其在脑部计算机接口中的应用,引起了人们的极大兴趣。本研究提出了一种两阶段的方法,其中第一步是获得脑电图衍生的特征,以稳健地学习深度代表,然后将学习的表示形式用于图像产生和分类。我们使用具有监督和对比度学习方法的深度学习体系结构在三个不同的数据集中进行了特征提取管道的普遍性。我们已经执行了零摄影的脑电图分类任务,以进一步支持概括性索赔。我们观察到,与脑电图和图像之间的联合代表学习相比,在单峰设置中仅使用脑电图数据来学习一个单独使用脑电图数据的近距离线性分离的视觉表示。最后,我们提出了一个新颖的框架,将看不见的图像转换为脑电图空间,并以近似值重建它们,从而展示了来自EEG信号的图像重建潜力。我们提出的来自EEG的图像合成方法显示了62。9%和36。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。EEGCVPR40和ThoughtViz数据集的成立得分提高了13%,这比GAN 1中的最先进的表现效果。
虽然最近的无模型增强学习(RL)方法已经证明了人类水平在游戏环境中的有效性,但它们在视觉导航等日常任务中的成功受到了限制,尤其是在很明显的外观变化下。此限制来自(i)样本效率不佳和(ii)对培训方案的过度效果。为了应对这些挑战,我们提出了一种世界模型,该模型使用(i)对比不受监督的学习和(ii)干预不变的统治者学习不变特征。学习世界动态的明确表示世界模型,提高样本效率,而对比度学习隐含地实施不变特征的学习,从而改善了概括。,随着对比的损失与世界模式的na'整合还不够好,因为基于世界模型的RL方法独立地优化表示表示和代理策略。为了克服这个问题,我们提出了一种干预 - 不变的正规剂,其形式是辅助任务,例如深度预测,图像DeNoising,图像分割等,以明确执行不变性以进行样式的干预。我们的方法优于当前基于最新的模型和不含模型的RL方法,并显着改善了IGIBSON基准测试中评估的分数范围内导航任务。仅使用视觉观察,我们进一步证明了我们的方法超过了最近的语言引导导航基础模型,这对于在计算功能有限的机器人上部署至关重要。最后,我们证明了我们提出的模型在吉布森基准上其感知模块的SIM到真实传输方面表现出色。
关键字:北京市;美丽的乡村建筑;农村能源;农村污水处理;信息是指。摘要。“美丽的农村建筑”是一个系统的项目,农村能源是其建筑的重要内容之一。根据环保建筑的概念,北京进行了彻底的“农村能源优化的结构调整”,“农村住房的地震节能项目”和其他措施。通过北京13个县和142个村庄的常规供暖技术研究,我们预测,农村能源的未来将进一步实施太阳能供暖,电动供暖和其他新的绿色能源技术。建议通过信息化建立“北京农村信息服务平台”和“美丽的农村信息资源库”,这将极大地加强对农村人民关系关系的监管和控制,并实现系统的优化,使城市和村庄拥有。人类生存和可持续发展的空间。
Xu,J。(2025)。大脑网络通过图表学习。新加坡南南技术大学博士论文。https://hdl.handle.net/10356/182865
用法指南:请参阅https://eprints.bbk.ac.uk/policies.html的用法指南,或者请联系lib-eprints@bbbk.ac.uk。
医学概念的有效表示对于电子健康记录的次要分析至关重要。神经语言模型在自动从临床数据中得出医学概念表示方面已显示出希望。但是,尚未对不同语言模型的比较性能,用于创建这些经验表示形式及其编码医学语义的程度,尚未得到广泛的研究。本研究旨在通过评估三种流行语言模型的有效性 - word2vec,fastText和手套 - 在创建捕获其语义含义的医学概念嵌入中的有效性。通过使用大量的数字健康记录数据集,我们创建了患者轨迹,并用它们来训练语言模型。然后,我们通过与生物医学术语进行明确比较来评估学到的嵌入式编码语义的能力,并通过预测具有不同级别可用信息的患者结果和轨迹来隐含。我们的定性分析表明,FastText学到的嵌入的经验簇与从生物医学术语获得的理论聚类模式表现出最高的相似性,分别在0.88、0.80和0.92的经验簇和0.92之间的诊断,过程和医疗代码分别为0.88、0.80和0.92之间。相反,为了预测,Word2Vec和Glove倾向于优于快速文本,而前者的AUROC分别高达0.78、0.62和0.85,分别用于现场长度,再入院和死亡率预测。在预测患者轨迹中的医疗法规时,手套在诊断和药物代码(分别为0.45和0.81)的最高级别上达到了语义层次结构的最高性能(AUPRC分别为0.45和0.81),而FastText优于其他模型的过程代码(AUPRC为0.66)。我们的研究表明,子词信息对于学习医学概念表示至关重要,但是全球嵌入向量更适合于更高级别的下游任务,例如轨迹预测。因此,可以利用这些模型来学习传达临床意义的表示形式,而我们的见解突出了使用机器学习技术来编码医学数据的潜力。
摘要 - 隐式表示,例如神经辐射场(NERF),可以通过连续的神经功能在3D场景中绘制颜色,密度和语义。但是,这些模型通常需要手动和仔细的人类数据收集进行培训。本文解决了自主nerf构造的主动探索问题。我们研究代理如何学会有效地探索未知的3D环境,以便在自主性过程中收集的数据能够学习高质量的神经隐式图表示。在四个与机器人相关的下游任务上评估了所学代表的质量:经典的观点渲染,地图重建,计划和姿势改进。我们比较了不同的探索策略的影响,包括基于前沿的基于基础和学习的方法(端到端和模块化)以及针对此问题量身定制的不同奖励功能。经验结果表明,可以使用在看不见的环境中使用一集经验对积极收集的数据进行培训,并且Autonerf是一种经过加固学习训练的模块化勘探策略,使得获得了高质量的NERF,以获得高质量的NERF,以实现经过考虑的下游机器人任务。最后,我们证明,使用Autonerf可以将代理部署到以前未知的场景中,然后通过通过勘探,重建和策略填充的循环来适应场景来自动改善其导航性能。