。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2023年1月23日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2023.01.23.525193 doi:Biorxiv Preprint
摘要——本文介绍了一种使用 Brahms 多智能体建模语言对模型进行形式化验证来确保宇航员探测车 (ASRO) 团队自主系统可靠性的方法。行星表面探测车已被证明对几次载人和无人月球和火星任务至关重要。第一批探测车是遥控或手动操作的,但自主系统越来越多地被用于提高探测车操作的效率和范围,例如 NASA 火星科学实验室。预计未来的载人月球和火星任务将使用自主探测车协助宇航员进行舱外活动 (EVA),包括科学、技术和施工作业。这些 ASRO 团队有可能显著提高地面作业的安全性和效率。我们描述了一个新的 Brahms 模型,其中自主探测车可以执行几种不同的活动,包括在 EVA 期间协助宇航员。这些活动争夺自主探测器的“注意力”,因此探测器必须决定哪些活动当前最重要,并参与其中。Brahms 模型还包括一个宇航员代理,它可以模拟宇航员在舱外活动期间的预测行为。探测器还必须对宇航员的活动做出反应。我们展示了如何使用 Brahms 集成开发环境模拟这个 Brahms 模型。然后,还可以使用 SPIN 模型检查器通过从 Brahms 自动翻译到 PROMELA(SPIN 的输入语言),根据系统要求对模型进行正式验证。我们表明,这种正式验证可用于确定任务和安全关键操作是否正确执行,从而提高 ASRO 团队行星探测器自主系统的可靠性。
在海上环境中,对各种活动的自主表面船(ASV)的使用和实施预计将推动其控制和控制的增长。尤其是,多个ASV的协调提出了新的挑战和机遇,需要在机器人技术,控制理论,通信系统和海洋科学的交集上进行跨学科的研究工作。可以集体使用这些船只的多种任务或目标,可以应用和组合不同的控制技术。这包括对机器学习的探索,以考虑以前认为不可行的方面。本评论提供了对协调的ASV控制的全面探索,同时解决了先前评论留下的关键差距。与以前的工作不同,我们采用了一种系统的方法来确保完整性并最大程度地减少文章选择中的偏见。我们深入研究了复杂的亚行动ASV世界,重点是定制的控制策略以及机器学习技术的整合以增加自治。通过综合最新进展并确定新兴趋势,我们提供了推动这一领域向前发展的见解,从而为未来的研究工作提供了最新技术的全面概述和指导。
在海上环境中,对各种活动的自主表面船(ASV)的使用和实施预计将推动其控制和控制的增长。尤其是,多个ASV的协调提出了新的挑战和机遇,需要在机器人技术,控制理论,通信系统和海洋科学的交集上进行跨学科的研究工作。可以集体使用这些船只的多种任务或目标,可以应用和组合不同的控制技术。这包括对机器学习的探索,以考虑以前认为不可行的方面。本评论提供了对协调的ASV控制的全面探索,同时解决了先前评论留下的关键差距。与以前的工作不同,我们采用了一种系统的方法来确保完整性并最大程度地减少文章选择中的偏见。我们深入研究了复杂的亚行动ASV世界,重点是定制的控制策略以及机器学习技术的整合以增加自治。通过综合最新进展并确定新兴趋势,我们提供了推动这一领域向前发展的见解,从而为未来的研究工作提供了最新技术的全面概述和指导。
结果:在CP/CPP患者中观察到大脑功能的深刻改变。这些变化涉及通过DC分析确定的多个大脑区域,包括右前扣带回皮层(ACC),左下额叶皮层,左杏仁核,右侧额叶皮层和双侧岛。REHO分析显示,右丘脑,左下额三角皮层,右上颞极,左ACC和右上额叶皮层(群集> 20素voxels,grf校正,p <0.05)。使用REHO和DC进行分析表明,与症状严重程度不同的大脑改变被定位在疼痛感知和调节区域中。具体而言,右ACC中的DC值与NIH-CPSI测量的症状的严重程度(AUC = 0.9654,p <0.0001)有线性相关。
支持图4:氢等离子体对kg/au(111)样品的影响。a,附加到负载锁室的等离子体设置的图片。b,典型的概述STM图像,显示等离子处理前kg/au的形态(111)(i t = 1 pa,v s = 0.1 v)。c,暴露于氢等离子体5分钟后样品形态的STM图像(i t = 1 pa,v s = 0.1 V)。等离子体是通过匹配网络通过匹配的网络在距离样品中使用13.56 MHz射频(RF)发电机使用100W的13.56 MHz射频(RF)发电机创建的。放电期间的压力为P 1×10-2 MBAR。该RF功率通过外电极(表面)耦合到管子。样品面向等离子体通量(角度= 90°)。d,暴露于氢血浆(p = 100 w)的样品形态的STM图像,(i t = 1 pa,v s = 0.1 V)。与等离子体通量相比,样品的放牧发生率(角度= 0°)。血浆处理蚀刻Kg聚合物。金表面没有显示簇,但人字重建略微修饰。e,暴露于氢血浆(P = 20 W)的样品形态的STM图像,然后在470 K处将底物退火。样品未直接暴露于等离子体方向(角度= -90°)。利用血浆中产生的原子氢在避免表面溅射的同时,如主手稿中所述,这种方法导致kg羰基的减少。
电池技术Pluraluce®EM和ACEM版本标准配备有NI-MH电池组,可提供至少30分钟的紧急持续时间。可选的90或120分钟的Ni-MH电池可用。最大电池工作温度为 +40°C,最小值为 +10°C。beluce自动测试(AT)Beluce自动测试系统每月进行一次5分钟的排出测试,每6个月进行一次24小时的两个30分钟放电测试。这可以测试全电池容量和充电能力。选择自动测试选项时,包括手动测试功能。手动测试将通过按测试开关的正确顺序进行30秒,15分钟或90分钟的测试。
摘要:复杂碳水化合物与寡聚C型凝集素之间的多价相互作用控制着广泛的免疫恢复。最新,标准的SPR(表面等离子体共振)竞争测定在很大程度上是为了评估从单糖单元(低亲和力,MM)到多价元素拮抗剂(中等亲和力,µm)的结合特性。在此,我们报告了SPR竞争测定法的典型案例研究表明,它们低估了糖类群体抑制DC-SIGN和固定的糖缀合物之间相互作用的效力。本文描述了在DC-Sign取向的表面上的SPR直接相互作用的设计和实现,可扩展到其他C型凝集素表面,如这种Langerin。此设置提供了从多价糖类群体以及来自细胞内存纳米群中组织的DC-SIGN四聚体同时发出的内在亲戚生成的微观概述。为此,通过链球菌 /链霉菌素相互作用对DC-sign的共价生物构捕获提供了四聚dc-sign的保存以及所有活动位点的可访问性 /功能。从经过测试的糖类群落文库中,我们证明了脚手架结构,价值和基于糖基的配体对于达到DC-Sign的纳摩尔亲和力至关重要。GlyCocluster 3.D说明了此组中DC-Sign表面(KD = 18 nm)的最紧密结合伙伴。此外,可以在多价尺度上轻松分析胶质d的一致尺度的选择性,以比较其在不同C型凝集素固定的表面上的结合。这种方法可能会引起对导致亲和力的多价结合机制的新见解,并为有希望的特定和多价免疫调节剂的结合效力做出了重大贡献。
Xavier Fettweis 1,Stefan Court 1.2,UTA Crebs-Kanzow 3,Charles Amory 1,Truo Ork,Truo Ork,Constantine J. Construction 6 Fujita 10,Paul Gierz 3,Heiko Greelzer 6.11.12,Edward Hanna 13,Akihiro Hashimoto Hashimoto 5,philip Huybright 15 Chorlots借出了LTEL 1,CORLOTS LANG 1,CORLOTS LANG。长期17.18,Jan T. M. Lenaerts 19,Glen E. Liston 20,Gerrit Lohmann 3,Sebastian H. Mernild 21.24.25,您Mikaliawicz 15,Kameswarra Modali 26,Ruth H. ,Jan Streffund 3,Broke 6的Willem,Broke 6的Michale 6,Wal 6.30的Rodeer S. W.
表面张力效应已知在亚毫米尺度上是主导的。在这种情况下,文献已广泛描述了基本的物理(例如,表面张力,润湿,表面质地和涂层)和毛细管力在多种应用中被利用(例如,封装,自我拾取,自我调整,毛细管密封和毛细管轴承)。由于可以使用几种刺激来控制液体弯月扫描,因此这些力主要用于开放环的微型机器人(即没有实时反馈)。然而,至少有两个不确定性的主要来源阻碍了这些力在开放循环中正常工作:接触角性疾病引起的可变性(润湿和不明式的差异)和液体所涉及量的可变性。要拒绝这些干扰,需要将成功的传感器集成和相关的高级控制方案嵌入到毛细管微生物微生物系统中。本文从三种不同的角度分析了该领域的研究贡献:表面张力效应的刺激作用(光,B场等。),范围(致动,采摘,密封等。)以及感应和控制方案。技术复杂的开发与优雅,直接的工程解决方案共处。表面张力的生物学方面不包括在本综述中。