©2023 Elsevier出版。此手稿可在Elsevier用户许可证下提供https://www.elsevier.com/open-access/userlicense/1.0/
On the Evaluation of Charge Transport and Reaction Kinetics in Z- Scheme Semiconductor Particles for Solar Water Splitting Rohini Bala Chandran, Shane Ardo and Adam Z. Weber © 2017 ECS - The Electrochemical Society ECS Meeting Abstracts, Volume MA2017-02, L02-Photocatalysts, Photoelectrochemical Cells and Solar Fuels 8 Citation Rohini Bala Chandran等人2017年会议。abstr。MA2017-02 1871 DOI 10.1149/MA2017-02/42/1871抽象太阳能分解是一种有前途的方法,可以以稳定的化学键的形式转换和存储太阳能。 在此处考虑,在存在可溶性氧化还原式穿梭的情况下,悬浮在水溶液中的半导体颗粒(光催化剂)的串联粒子 - 悬浮反应器设计1(如图1所示)。 使用设备尺度的数值模型1,我们确定了反应器的设计和光催化剂和氧化还原式班车的浓度,可通过扩散驱动的物种运输产生高达3.8%的太阳能到氢转化效率。 通过自然对流促进物种混合预测,较高的能量转化效率。 在此设计中,每个半导体粒子都被电解质润湿,电解质至少包含四种化学物种,这些化学物质可以参与颗粒表面上的氧化还原反应。 因此,选择性表面催化对于达到高太阳能到氢转化效率至关重要。 在本研究中,我们开发了一个数值模型,以评估球形半导体粒子内以及跨半导体 - 电解质电解质界面的光生电荷接载体的转运和动力学。 Z. 见面。 abstr。MA2017-02 1871 DOI 10.1149/MA2017-02/42/1871抽象太阳能分解是一种有前途的方法,可以以稳定的化学键的形式转换和存储太阳能。在此处考虑,在存在可溶性氧化还原式穿梭的情况下,悬浮在水溶液中的半导体颗粒(光催化剂)的串联粒子 - 悬浮反应器设计1(如图1所示)。使用设备尺度的数值模型1,我们确定了反应器的设计和光催化剂和氧化还原式班车的浓度,可通过扩散驱动的物种运输产生高达3.8%的太阳能到氢转化效率。通过自然对流促进物种混合预测,较高的能量转化效率。在此设计中,每个半导体粒子都被电解质润湿,电解质至少包含四种化学物种,这些化学物质可以参与颗粒表面上的氧化还原反应。因此,选择性表面催化对于达到高太阳能到氢转化效率至关重要。在本研究中,我们开发了一个数值模型,以评估球形半导体粒子内以及跨半导体 - 电解质电解质界面的光生电荷接载体的转运和动力学。Z.见面。abstr。通过与电荷载体传输方程保持一致的泊松玻尔兹曼方程自我来获得粒子内的电势分布。在半导体 - 电解质界面上大多数和少数电荷载体的通量考虑了界面上的所有合理的氧化还原反应。建模结果阐明了反应选择性不仅对动力学参数的依赖性,还阐明了诸如辐照度,工作温度,粒径,重组途径和电解质电解化学电位等变量。结果进一步解释,以确定策略以提高Z-Scheme水分分割系统的能量转换效率。参考文献(1)Chandran,R。B。;布雷恩(Breen); Shao,Y。; Ardo,S。;韦伯,A。2016,MA2016-01(38),1919– 1919年。2016,MA2016-01(38),1919– 1919年。
1.zheng W#,Yamada SA#,Hung St,Sun W,Zhao L,Fayer MD。增强了介孔二氧化硅中的Menshutkin SN2反应性:表面催化和限制的影响。美国化学学会杂志,2020,142(12):5636-5648。2.MA,Z.,Zheng,W。*,Sun,W。*,Zhao,L。通过甲基功能性[N1,1,1,1] [C10SO4]添加剂增强H2SO4催化的C4烷基化的C4烷基化。AICHE Journal,2023,E18179。3.Zheng,W.,Ma,Z.,Sun,W.,Zhao,L。靶标高效离子液体通过机器学习促进H2SO4催化的C4烷基化。 AICHE Journal,2022,68(7),E17698。 4.MA,Z.,Sha,J.,Zheng,W。*,Sun,W。*,Zhao,L。深共晶溶剂对H2SO4催化烷基化的影响:结合实验和分子动力学模拟。 AICHE Journal,2022,68(4),E17556。 5.zheng W,Wang Z,Sun W,Zhao L,Qian F. H2SO4催化的异丁烷烷基化在长烷基 - 链表面活性剂添加剂促进的低温下。 AICHE期刊。 2021,67(10):E17349。 6.Zheng W,Sun W,Zhao L等。 了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。 AICHE Journal,2018,64(3):950-960。 7.Zheng W#,Liu C#,Wei X等。 使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。 化学工程科学,2023,267:118329。 8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。3.Zheng,W.,Ma,Z.,Sun,W.,Zhao,L。靶标高效离子液体通过机器学习促进H2SO4催化的C4烷基化。AICHE Journal,2022,68(7),E17698。4.MA,Z.,Sha,J.,Zheng,W。*,Sun,W。*,Zhao,L。深共晶溶剂对H2SO4催化烷基化的影响:结合实验和分子动力学模拟。AICHE Journal,2022,68(4),E17556。5.zheng W,Wang Z,Sun W,Zhao L,Qian F. H2SO4催化的异丁烷烷基化在长烷基 - 链表面活性剂添加剂促进的低温下。AICHE期刊。2021,67(10):E17349。6.Zheng W,Sun W,Zhao L等。 了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。 AICHE Journal,2018,64(3):950-960。 7.Zheng W#,Liu C#,Wei X等。 使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。 化学工程科学,2023,267:118329。 8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。6.Zheng W,Sun W,Zhao L等。了解用硫酸或离子液体催化的C4烯烃的等丁烷烷基化的界面行为。AICHE Journal,2018,64(3):950-960。7.Zheng W#,Liu C#,Wei X等。使用离子液体作为催化剂的聚(乙二醇)糖酵解的分子水平溶胀行为。化学工程科学,2023,267:118329。8.liu C,Ling Y,Wang Z,Zheng W*,Sun W*,Zhao L.揭示离子液体和甲醇之间的微环境,用于聚乙二醇(乙二醇乙二醇)的酒精分析。化学工程科学。2022,247:117024。9.zheng W,Sun W,Zhao L,Qian F.建模由疏水二氧化硅纳米孔中的甲基咪唑的固体/液体界面特性。化学工程科学。2021,231:116333。10.Zheng W,Sun W,Zhao L等。 了解液态液反应中离子液/硫酸催化剂的微结构和界面特性。 化学工程科学,2019,205:287-298。 11.zheng W#,Cao Piao#,Sun W,Zhao L等。 用Brønsted酸性离子液/硫酸催化的C4烯烃对异丁烷烷基化的实验和建模研究。 化学工程杂志。 2019,377:119578。 12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。10.Zheng W,Sun W,Zhao L等。了解液态液反应中离子液/硫酸催化剂的微结构和界面特性。化学工程科学,2019,205:287-298。11.zheng W#,Cao Piao#,Sun W,Zhao L等。用Brønsted酸性离子液/硫酸催化的C4烯烃对异丁烷烷基化的实验和建模研究。化学工程杂志。2019,377:119578。 12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。2019,377:119578。12.Zheng W,Sun W,Zhao L等。 使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。 化学工程科学,2018,186:209-218。 13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。12.Zheng W,Sun W,Zhao L等。使用复合离子液体作为催化剂,将异丁烷烷基化与2-丁烯进行多尺度建模。化学工程科学,2018,186:209-218。13.Zheng W,Sun W,Zhao L等。 基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。 化学工程科学,2018,183:115-122。 14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。13.Zheng W,Sun W,Zhao L等。基于分子动态模拟的亚丁烷烷基化咪唑离子液体的筛选。化学工程科学,2018,183:115-122。14.Zheng W,Sun W,Zhao L等。 使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。 化学工程科学,2017,166:42-52。 15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。14.Zheng W,Sun W,Zhao L等。使用离子液体作为催化剂的C4烯烃对异丁烷烷基化的界面行为进行建模。化学工程科学,2017,166:42-52。15.Zheng W,Sun W,Zhao L等。 通过离子液体微乳液对纳米级金属有机框架的可控制备。 工业与工程化学研究,2017年,第56(20):5899-5905。15.Zheng W,Sun W,Zhao L等。通过离子液体微乳液对纳米级金属有机框架的可控制备。工业与工程化学研究,2017年,第56(20):5899-5905。16.Zheng W,Zhao L,Sun W,QianF。了解纳米级硅孔中甲基咪唑的限制效应和动力学。物理化学杂志C. 2021,125(13):7421-7430。17.Wang Z#,Zheng W#,Li B等。在共价有机框架中限制了离子液体,朝着高安全锂金属电池的合理设计。化学工程杂志,2022,433:133749。