可变形表面有可能实现新型自适应系统,但现有的制造方法在实现高分辨率变形为任意指定形状的能力方面有限。这项工作提出了一个平台和用于生成刀具路径的算法,以实现能够进行高分辨率表面变形的自由曲面结构。变形表面由液晶弹性体 (LCE) 组成,向列相域使用能够施加可调压力和剪切速度的刮擦柱进行对齐,能够局部调整驱动应变,从而将曲率半径从 1.8 毫米调整到 14.4 毫米。使用两种替代算法生成了多层结构的图案化刀具路径,并使用能够从平板变形为圆顶的示例结构和人脸模型对结果进行了比较。与原始模型相比,此过程产生的变形人脸形状结构相似度高达 84.5%,证明了这种方法在制造复杂可变形 LCE 结构方面的高保真度和可重构性。
基于表面变形技术的航空发动机部件特许权开发的两阶段宏方法 ROBERT RUSU 1 , TUDOR-GEORGE ALEXANDRU 2 , MONICA MANOLE 3 摘要:计算机辅助工程工具在航空航天工业中广泛使用,用于飞机生命周期的所有阶段,以便以数字方式捕捉零件和子组件在地面和飞行载荷下的行为。对于涡扇发动机,除了设计阶段外,仿真工具还与物理几何测量测试程序密切相关,用于支持基线虚拟原型的制造变更。虽然此类方法已处于成熟阶段,并被世界各地的团队以各种配置使用,但涉及大量手动工作以及需要大量重复性任务,导致此类项目花费大量时间,而知识工程的获取和重用程度较低。本文通过扩展传统模拟方法来解决此类问题,这些方法具有嵌入在计算机辅助工程预处理软件中的表面变形功能,作为可以填补物理几何测量数据和数值模拟模型之间差距的工具。通过关于变量 s 发生的制造不合格性的概念案例研究证明了给定的概念
移动摄像机:开发了一个共处的视觉,深度和触摸传感器以及一组算法,以视觉上的伺服机器人到工作区目标,并通过视觉和触摸来定位对象。ICRA&RA-L'22移动灯:设计和实施了一个机器人工作区量表光度计算机设置,用于对象不可知,表面纹理,表面方向和表面变形感知。WACV'24
摘要。皮质表面重建在对围产期期间大脑快速发育进行建模方面起着基本作用。在这项工作中,我们提出了有条件的时间注意网络(COTAN),这是一个快速的端到端末端框架,用于新生儿皮质表面重建。Cotan可预测新生儿脑磁共振图像(MRI)的多分辨率固定速度场(SVF)。Cotan不是整合多个SVF,而是引入了注意机制,以通过在每个集成步骤中计算所有SVF的加权总和来学习有条件的时变速度场(CTVF)。每个SVF的重要性(通过学习的注意图估算)的重要性是基于新生儿的年龄,并且随着整合的时间步骤而变化。提出的CTVF定义了差异表面变形,该变形可有效地减少网格自我交流误差。仅需要0.21秒即可为每个脑半球变形至皮质白色垫料和毛皮表面的初始模板网格。cotan在开发的人类连接项目(DHCP)数据集上得到了验证,其中877 3D脑MR图像是从早产和术语出生的新生儿获取的。与最先进的基线相比,科坦仅以0.12±0.03mm的几何误差和0.07±0.03%的自我相交面部实现了优势。我们注意地图的可视化说明了科坦确实在没有中间监督的情况下自动学习了粗到细的表面变形。
顶部安装的俯仰点吸收器是最有前途的波浪能转换器之一,因为它可以轻松地连接到现有的海上结构上。然而,由于强烈的非线性流体动力学行为,很难准确预测其能量转换性能。本文使用光滑粒子流体动力学 (SPH) 来解决这种波结构相互作用问题。首先根据从楔形入水实验中获得的自由表面变形测量值来验证 SPH 方法。规则波与固定和自由俯仰设备相互作用的 SPH 模拟与测量数据高度吻合,为预测功率转换性能提供了信心。吸收功率和捕获宽度比随着波浪周期表现出单峰行为。在此分布中的峰值功率的波浪周期随着 PTO 阻尼而增加。根据观察到的设备尺度的缩放行为,最佳阻尼的较大尺寸设备能够有效吸收较长波长的入射波的能量。在有限深水中,较大器件相对于较小器件实现了更高的效率,其在2πh/λ=1.1时的峰值效率为选址提供了参考。
遥感中的 InSAR 特刊 合成孔径雷达干涉测量 (InSAR) 主要用于遥感应用,并创建了一类新的雷达数据。InSAR 自从最初作为一种用于测量地球表面变形和地形的新型先锋遥感工具发展成为一项成熟的技术以来,已经发生了重大变化,现在可以为广泛而多样的地球科学过程提供关键约束。本期特刊将邀请投稿,回顾当前的进展,重点介绍 InSAR 信号处理技术的最新趋势以及 InSAR 在地球科学中的应用。感兴趣的主题包括(但不限于)InSAR 在配准和噪声过滤、相位展开、变形时间序列分析、火山骚乱、水文学、灾害科学、森林科学、地震和城市场景中的应用。受邀论文的选拔将以 4 页白皮书为基础,以双栏格式提交。根据白皮书选出的投稿人将被邀请提交完整的手稿。手稿应在线提交至
对大空间结构的姿态控制的分布式磁性扭矩杆的实用性被构成。执行器的分布式阵列提供了优势,例如分布结构载荷,增加的容错性,允许模块化设计结构,此外,执行器可能会与轨道上的制造策略进行整体化。首先,显示分布式扭矩可有效旋转高度柔性的结构。这与应用于结构中心的扭矩进行了比较,该结构会导致较大的表面变形,并且可能无法实施旋转。使用带有嵌入式执行器的平面结构的弹簧质量模型来证明这一点。然后开发出分布式扭矩算法以控制一个可寻址的执行器阵列。使用阵列进行态度控制模拟,以控制大型空间结构,再次以弹簧质量系统建模。态度控制系统已被证明可以有效地挖出代表性的75×75 M柔性结构,并在存在重力级别的扭矩和现实的磁场模型的情况下执行杀伤动作。
管道升压已被广泛用于公用事业隧道结构中,作为中国环境友好的方法。这项研究集中在黄冈Mingzhu Road的公用事业隧道中使用的关键技术。该公用事业隧道的内径和外径分别为4m和480万,这是目前中国最大的圆形管孔项目。此公用事业隧道是在城市主道下设计的,交通繁忙,因此管道凸出结构的控制精度必须高。根据项目的特征和实际的施工技术指标,包括管子升压设备选择,小间距的启动,泥浆循环,减少阻力技术以及对地表沉降的控制,包括管道尖顶设备的选择,启动管道设备的关键技术。同时,监测管道齿轮结构期间的凸出力和表面沉降。结果表明,选定的管板机对项目的地质条件具有良好的适应性。实际的升压力比理论值小得多,并且两个中间升压站没有被激活。此外,在整个管道凸起构造过程中,道路表面变形为-8 - 5mm,对表面交通没有影响。
从时间分辨的医学图像中精确重建右心几何形状和运动可增强基于图像可视化的诊断工具以及通过计算方法进行的心脏血液动力学分析。由于右心形态和运动的特殊性,常用的分割和/或重建技术仅采用短轴电影 MRI,在右心相关区域(如心室底部和流出道)缺乏准确性。此外,重建过程非常耗时,并且在生成计算域的情况下需要大量的人工干预。本文提出了一种从时间分辨 MRI 中精确高效地重建右心几何形状和运动的新方法。具体而言,所提出的方法利用表面变形来合并来自多系列电影 MRI(如短/长轴和 2/3/4 腔采集)的信息并重建重要的心脏特征。它还通过利用合适的图像配准技术自动提供完整的心脏收缩和放松运动。该方法既适用于健康病例,也适用于病理(法洛四联症)病例,并且比标准程序产生更准确的结果。所提出的方法还用于为计算流体动力学提供重要输入。相应的数值结果证明了我们的方法在计算临床相关血液动力学量方面的可靠性。© 2023 Elsevier BV 保留所有权利。