这项研究研究了在声学应用中使用基于碳化硅的分层表面声波(SAW)设备的可行性。通过理论分析研究了温度稳定的层状结构TEO 3 /SIC /128 O Y-X Linbo 3的声学特性。此分析包括对关键参数的评估,例如重叠积分,功绩图和衍射效率。使用SAW软件获得了这些计算所需的SAW传播特性和字段填充。结果表明,分层结构具有近96%的较高衍射效率,并且值得良好的声学数字有希望的值,这表明在低驱动功率声音器件设备中的潜在用途。该研究得出结论,基于3C E的分层结构具有出色的声学特性,并且具有可以承受恶劣环境条件的声学设备中使用的潜力。
自量子计算初期以来,产生稳定量子位的最大挑战之一是量子系统的高损失率,导致量子状态的变质并破坏量子的损失。在这方面,对于技术应用而言,需要长时间的退积时间和低损失的系统,并且可以更好地了解量子力学。获得低损耗系统的一种方法是将量子乘数(例如超导电路)与诸如声子等散装固体的机械自由度息息。在这篇简短的评论中,我试图解释了已经完成了这种耦合的一些不同方法,并对有关该主题的论文进行了简短的评论。i然后尝试使用机械自由度(即使用表面声波(SAW)的量子控制)来指定一种量子控制方法。
•博士后的家伙(3)o Mustafa Demirci Demirci 2023当前职位:TBA o Emre Tufekcioglu博士2015 - 2016 - 2016年当前职位:Eskisehir University,Eskisehir University,Eskisehir,Turkey,Turkey o Alper Sisman o Alper Sisman 2011 - 2012年现任职位:助理教授,电气和电子工程学,Marmarains Engineering,Marmara•Marmara,是Marmara o。何塞·保罗(Jose Paul)博士候选人,与A. Kumar Ph.D.共同顾问预计在2024年O Tia Sayers博士候选人博士预计在2025年O Ozge Uyanik博士学生博士预计在2026年o塞缪尔·多纳图斯(Samuel Donatus)博士学生,与J. Wang Ph.D.预计在2026年o约翰·科特(John Cotter)博士在机械工程学2022年论文中:散装玻璃作为结构元素的压缩加固,当前位置:奥兰多Transtek International Group的首席研究员,Fl o Saleh Alhumaid,博士机械工程学2022年论文杂志:一款非接触磁铁磁铁收割机的汽车再生悬架系统,与D. Hess当前职位共同努力:沙特阿拉伯冰川大学助理教授O Joel Cooper,博士。在机械工程2020年论文中:使用振动和声学力对哺乳动物细胞进行操纵和模式,与D. Gallant Current位置共同助理:Triton Systems,Inc。项目工程师。Chelmsford,Ma O Hani Alhazmi,Ph.D。在机械工程学2020年论文中:使用表面声波的液体高度估计和螺栓张力定量验证的实验研究,使用表面声波当前位置:Saudi Arabia Arabia o Marwan Belaed的Umm al-Qura University的助理教授,博士学位。在机械工程2020年论文中:仿真和验证热能储能的相变材料,与M. Rahman Current职位共同咨询:太阳能工程顾问为DBA,DBA,TAMPA,FL O Matt Trapuzzano,Ph.D.。机械工程2019
温度是限制 SETSAW 器件作为电流量子标准的精度的一个因素 Nick Fletcher、Jan-Theodoor Janssen 和 Tony Hartland NPL,英国米德尔塞克斯郡泰丁顿 1.摘要 我们测量了声电流平台 I n = nef 的斜率 (∆ I / ∆ V g ) n(n =1 和 2),作为浴温 T 在 0.3 至 4.2 K 范围内的函数。限制在一维通道中的电子“冲浪”频率为 f ≈ 2.8 GHz 的表面声波,该波由沉积在 GaAs 异质结构上的换能器产生。通道宽度由施加到同样沉积在异质结构上的肖特基栅极的电压 V g 控制。将归一化斜率 S = ( ∆ I / ∆ V g ) n /( ∆ I / ∆ V g ) n -1 → n 与使用 Flensburg 等人 [11] 提出的描述器件行为的模型计算出的斜率进行了比较。在这个模型中,S 与有效温度 T eff 相关,该温度可能大于 T 。测量表明,对于 n =1,T eff 的最小值为 1.65 ± 0.1 K,对应于最小值 S ≈ 10 -3 。2.简介 目前,国家计量机构正在进行大量研究工作,旨在开发基于单电子传输的电流量子标准。NPL 参与了两个这样的项目,一个使用单电子 R 泵(详见本摘要 [1] 中的其他内容),另一个基于本文的主题 SETSAW(表面声波单电子传输)技术。图 1 显示了 SETSAW 设备的示意图。该设备制造在半导体衬底(GaAs/Al x Ga 1-x As 异质结构)上,该衬底表面附近包含准二维电子气 (2DEG)。设备一端的叉指换能器 (IDT) 产生表面声波 (SAW),该表面声波传播通过形成 2DEG 收缩的中心区域。该行进机械波在压电 GaAs 材料中产生相应的电势,该电势与 2DEG 相互作用。在收缩区域(通常由沉积在表面上的金属分裂栅形成,相对于 2DEG 保持在负电位),SAW 电位的最小值可视为移动量子阱,其通过收缩通道传输电子。如果通道足够封闭,即上述量化电流的首次实现于 1996 年 [2] 报道。然而,尽管过去 5 年不断进行研究和开发 [例如“夹断” 使得正常传导被禁止,并且可以布置 SAW 的电位,使得每个电位最小值传输相同(少量)数量的电子,然后该设备用作电流源,产生电流 I=nef ,其中 n 是整数,e 是电子电荷,f 是 SAW 的频率。与使用通过金属-绝缘体-金属隧道结进行电子泵送相比,该技术的优势在于更高的工作频率 - 高达 5 GHz [3] 产生近 1 nA,而约 10 MHz 产生几个 pA。4,5,6],SETSAW 设备的量化精度仍然低于电子泵 [7]。本文介绍了一项实验的结果,该实验旨在测量 SETSAW 设备特性的温度依赖性,以期更好地理解(并希望控制)误差机制。
最近已经确定,可以通过二维迪拉克材料的表面声波(SAW)来产生非线性谷电流。到目前为止,锯谷电流已归因于翘曲的费米表面或浆果相的影响。在这里,我们证明倾斜机制也可以导致非线性山谷大厅电流(VHC),而将托管锯放在带有倾斜的狄拉克锥体上的材料中,则将其放置在压电基底物上。发现非线性VHC对倾斜相对于锯的方向表现出Sinθ的依赖性。此外,这种倾斜的非线性声学VHC在放松时间上显示出与浆果相位或三角翘曲的贡献的独立性。值得注意的是,单次应变石墨烯中倾斜机理的非线性声学VHC的大小是两个阶比MOS 2中报道的级数大,源自浆果相的影响和扭曲效应。
用于经典波(例如电磁波和声波)的拓扑材料引起了越来越多的关注,这主要是因为它们具有鲁棒性、低损耗以及边界赋予的新的人工自由度。表面声波 (SAW) 作为广泛使用的微型设备相关信息载体,在当今的无线通信和传感网络中无处不在。在此,我们报告了基于单片集成平台的 SAW 拓扑绝缘体的实现。通过在压电半空间上使用工作频率为数十兆赫的微型声学谐振器阵列,我们成功地赋予电泵浦瑞利型 SAW 以“自旋动量锁定”特性,使固态声波在“三维体积上二维表面的一维界面”上任意绕行并穿过缺陷和交叉点,而损耗比任何其他解决方案都要小得多。这些革命性的拓扑 SAW 可能为未来移动通信、传感和量子信息处理等领域具有超高性能和先进功能的单片电子(光子)声子电路开辟一条道路。
近年来,表面声波(锯)已成为一种新型技术,用于在凝结物质系统中产生准粒子传输和带调节。锯子通过压电和应变场与相邻材料相互作用,沿波传播的方向拖动载体。大多数关于大声效应效应的研究都集中在载体的集体方向运动上,该方向产生了稳定的电势差,而动态空间电荷调制的振荡成分对于探测仍然具有挑战性。在这项工作中,我们报告了石墨烯中振荡大声效应的连贯检测。这是通过在跨胶质传感器发出的电磁波的时空电荷振荡的相干整流来实现的。我们系统地研究了整流信号的频率和门依赖性,并定量探测由锯驱动的载体重新分布动力学。观察振荡的大声电效应可直接访问通过传输实验引起的锯引起的动态空间电荷调制。
离子束蚀刻 (IBE) 通过定向和精确控制的离子能量轰击蚀刻目标,去除材料。IBE 也称为“离子束铣削”。IBE 源从惰性气体(通常是氩气)产生等离子体。一组电偏置网格确定离子束能量和离子束内的离子角发散。离子束撞击基材,通过物理溅射去除材料。离子束蚀刻具有其他等离子体工艺所不具备的定向灵活性。虽然 IBE 的蚀刻速率通常低于反应离子蚀刻 (RIE),但 IBE 可为需要精确轮廓控制的应用提供高精度(高各向异性)。此外,离子束蚀刻可用于去除 RIE 可能无法成功的材料。离子束可以蚀刻与 RIE 不兼容的合金和复合材料。离子束蚀刻有许多应用,包括磁传感器的纳米加工、MEMS 设备以及表面声波 (SAW) 和体声波 (BAW) 滤波器的修整。一种较新的应用是制造高性能非易失性存储器,特别是“自旋转移扭矩” MRAM(磁阻随机存取存储器)。
摘要:由于其特征,包括10-15 pc/n的D 33和高稳定性,直至1000℃以上的温度,因此,含有壁炉晶体的极性玻璃 - 螺旋孔被认为是在高温下需要压电的应用的高效材料。在本文中,我们研究了Sr-Fresnoite(STS)玻璃训练的钡取代。研究了两个方面:首先,取代对结晶的优先方向的影响,其次,玻璃 - 凝聚力在高温下产生和传播表面声波(SAW)的能力。XRD分析表明,BA的替换为10 at。替代,使我们能够保持壁画晶体(00L)平面的强烈优先取向,低于表面以下1 mm以上。较高的替代水平(25和50 at。%)诱导与表面机制竞争的非方向的体积结晶机制。锯设备是用0、10和25 at。%ba取代的玻璃室底物制造的。温度测试揭示了所有这些设备的频率和延迟的高稳定性。玻璃 - 驾驶次数为10%Ba取代的玻璃训练性给出了锯信号的最强振幅。这归因于高(00L)优先方向以及缺失的体积结晶。
可扩展量子技术的开发对于量子计算和模拟等应用尤为重要。半导体量子器件在扩大规模和实现集成量子电路方面具有良好的潜力。它们还为在技术应用中实现用于电特性的原位量子传感器提供了一个天然平台。近年来,人们为利用单个或少数电子的量子特性开发量子技术做出了巨大努力 [1, 2],主要针对空间上位于物理位置的电子,例如半导体纳米结构中的量子点或掺杂剂。单个电子也可以以受控的方式在这些位置之间移动,通常是通过有效移动量子点限制电位,例如通过表面声波引起的电位 [3] 或通过改变量子点阵列中的栅极电压 [4, 5]。本白皮书介绍了一种迄今为止研究较少的独特硬件资源,可用于潜在的量子优势:以连续自由度的量子态为目标,控制单电子波包的生成、操纵、相互作用和测量。该领域的基础科学基础受到与光子量子光学的类比的启发,并被命名为固态电子量子光学 [6]。探索和扩展电子量子光学在量子计量学中的潜力一直是