气候变化被认为是全球最大的挑战,在其最前沿是能源的话题。虽然非常重要,但有关能源的辩论已成为一种正常性。与能源储能应用的材料合成相关领域也在增长,以及对可再生能源的工业电气化需求。水性超级电容器是一种能够提供高功率密度的储能设备,同时在环境友好的媒体中保持长期环环性。但是,他们的挑战包括在能量密度,安全性和低成本的电极生产方面保持较高的表现。mxene是由H,OH和F组终止的二维过渡金属碳化物/氮化物的家族。该材料表现出与其3D母体材料最大相位的能源应用相关的出色物理和化学特性。自2011年发现以来,由于其高电导率(20,000 s.cm -1)和可以达到900 FCM -3的体积功能,MXENE(例如Ti 3 C 2 T Z)在储能领域得到了广泛研究。但是,报告的MXENE的合成过程充满了耗时的危险程序。本文的第一部分提出了一种新的Ti 3 C 2 T Z Mxene合成的创新方法,其中MXENE在几毫秒内合成了MXENE,借助30 MHz频率表面声波(SAW)和0.05m的LIF。在硫酸电解质中研究了MO 1.33 CT Z。MO 1.33 CT ZTi 3 Alc 2 Max相中的铝元素被所谓的“局部HF”蚀刻,并将粉末转化为2d Ti 3 C 2 T Z。该方法显示了与先前报道的合成技术相当的MXENE,如该材料的电型性能所证明的那样。该论文的第二部分着重于研究相对较新的MXENE家族在水溶液中产生的I-含量的电化学性能。i -mxene在2017年报道,具有化学式MO 1.33 ct z,是平面内化学有序化学蚀刻的产物(MO 2/3 SC 1/3)2 ALC I -MAX相。该电解质为电极电位窗口和电容设置了极限,因此,使用后处理方案来增强电化学性能。
IEEE传感器会议是IEEE传感器委员会的旗舰会议。理事会是传感器爱好者和志愿者的组织,为26个IEEE成员社会提供服务。从2002年开始,IEEE传感器会议就一直是研究人员,工程师,从业人员和学生的论坛,以展示和讨论他们的研究,最佳想法,创新和产品。传统上,会议涵盖了传感器的各个方面,从传感材料到传感系统。今年我们有一个激动人心的程序。会议始于主题研讨会,该研讨会与教程并联。今年,我们邀请社区提出研讨会的想法,并选择了四个。今年,我们比以往任何时候都更加强调我们的计划是行业参与的重要作用。我们在传感器期间继续我们的教程传统,今年提供了14个教程。我们正在继续使用该计划介绍的46篇论文。我们完全收到了1242篇论文提交给14条技术曲目,4次专注的会议和现场演示。在严格的审查过程中,接受了683篇论文,接受率为55%。今年,我们获得了亚太地区提交的57.2%,欧洲29.7%,北美8.9%,拉丁美洲1.1%,中东/非洲的3%。总共有315次讲座和357海报在IEEE传感器2024中呈现。此外,还提出了16次邀请的讲座。所有与会者都有机会在公开海报会议期间呈现其结果,今年介绍了26张公开海报。会议的每一天都以传感器领域的著名专家的主题演讲开始。周一,日本京胡大学的Masaki Hirota将发表题为“在未来运输系统中先进安全,舒适和便利的传感器”的演讲。来自美国芝加哥大学的安德鲁·克莱兰德(Andrew Cleland)将于周二发表一场题为“发射和感知单个表面声波声子”的演讲。 最后,比利时IMEC的克里斯·范·霍夫(Chris van Hoof)将以“农业5.0,食品5.0和健康5.0”的演讲开始会议的最后一天 - 技术和AI如何启用这种激进的转型”。 今年,我们强调了21个参展商的工业研究和产品,在周一由行业组织的轨道和工业会议上,以及有关“高级人体机器界面的身体感测”的工业组织研讨会。 年轻专业人士(YP)委员会在周日的一般欢迎招待会上组织了一场海报会议。 Wise(传感器中的女性),YP,D&I(多样性与包容性)和CEC联席会议也将于周一举行。 明智的委员会邀请您参加周二的网络活动。 YP和Wise共同赞助了周三的大创意比赛。 2024年IEEE传感器期间的社交活动将包括周日的欢迎招待会和周二在Portopia Hotel举行的晚宴。 IEEE传感器2024是基于许多人共同努力的协作努力。来自美国芝加哥大学的安德鲁·克莱兰德(Andrew Cleland)将于周二发表一场题为“发射和感知单个表面声波声子”的演讲。最后,比利时IMEC的克里斯·范·霍夫(Chris van Hoof)将以“农业5.0,食品5.0和健康5.0”的演讲开始会议的最后一天 - 技术和AI如何启用这种激进的转型”。今年,我们强调了21个参展商的工业研究和产品,在周一由行业组织的轨道和工业会议上,以及有关“高级人体机器界面的身体感测”的工业组织研讨会。年轻专业人士(YP)委员会在周日的一般欢迎招待会上组织了一场海报会议。Wise(传感器中的女性),YP,D&I(多样性与包容性)和CEC联席会议也将于周一举行。明智的委员会邀请您参加周二的网络活动。YP和Wise共同赞助了周三的大创意比赛。2024年IEEE传感器期间的社交活动将包括周日的欢迎招待会和周二在Portopia Hotel举行的晚宴。IEEE传感器2024是基于许多人共同努力的协作努力。会议参与者将有机会见到IEEE传感器委员会赞助的期刊的主持人,包括IEEE传感器期刊,IEEE Sensors Letters,IEEE IEEE杂志传感器中的选定区域,IEEE传感器评论,IEEE Internet of There Internet of There Internet Journal和IEEE EEEE Journal on Flivible Electible Electonics。晚宴将与Taiko(日本鼓)表演和Awa Odori表演一起对待与会者,沉浸在传统的日本文化中。,我们感谢所有组织委员会和计划委员会成员为志愿服务和花费大量时间准备会议。我们感谢作者和参与者访问了科比并分享您的想法和想法。我们很高兴在日本神户的IEEE传感器2024与您会面。
膜型超材料,[17] 最近的研究表明,将液体与固体结构结合起来可以极大地促进可重构性。最近展示了一种被动可重构亥姆霍兹共振器,其中填充了不同体积的水来调节其自由腔空间。 [18] 但是,为了主动调整液体嵌入超材料设计,我们需要主动微流体技术来在芯片上控制液体的流动性。文献中存在许多主动微流体控制机制 [19],如光电润湿、电泳和表面声波。这些可用于以受控方式移动微尺度液滴,并已被用于各种应用,如芯片实验室、[20] 打印、[21] 光流体透镜 [22] 和声流体。 [23] 然而,声流体领域 [24] 迄今为止仅关注使用施加声场来操纵液滴 [25,26],而不是反之亦然。此外,由于尺寸大、吞吐量低、体积大以及整合主动控制机制所需的材料成本高昂,制造超紧凑可调超材料设计面临着制造挑战。在这里,我们提出并开发了一种新型超紧凑元结构,我们称之为超材料,它具有利用微流体的主动驱动机制,这将具有重要实际意义并促进微流体声学超材料 (MAM) 的新方法。在本文中,我们设计、制造并展示了一种液滴集成超材料,其可调性源自一种基于数字微流体的主动液滴操纵技术,称为电介质电润湿 (EWOD)。 [27–29] 我们利用微机电 (MEMS) 技术实现了对深亚波长狭缝(尺寸为长度 = 0.5 λ (L)、宽度 = 0.06 λ 和高度 = 0.02 λ )的动态控制,以操纵超声波(40 kHz)。例如,在文献中很少见到在频率 20.9 kHz(λ 表示声音的波长)时约为 λ /650 的超薄深亚波长超材料,其中通过在超表面上镂空图案化来剪纸任意图案。[30] 已报道的大部分作品(如范围在微米到毫米级的超声波超透镜 [31])都是“被动的”,但这里我们提出了一种新型的主动可调谐深亚波长超薄超材料(厚度为 200 微米,高达 λ /44),据我们所知,与以前的研究相比创下了纪录。基于 MEMS 的 MAM 设计铺平了道路
半导体中单个磁性原子的自旋光子接口 总体范围:半导体中的单个自旋对量子信息技术的发展大有裨益。由于其期待已久的相干时间,单个缺陷上的局部自旋是量子信息存储的首选介质,而半导体平台提供了有趣的集成前景。对于充当量子节点的局部自旋的长距离耦合,需要自旋光子接口。这些接口通常基于特定的光学选择规则。对于非光学活性磁性杂质,可以通过它们与半导体载体的交换相互作用实现光学接口。这已在插入半导体量子点 (QD) 的过渡金属元素 (Mn、Cr、Co、Fe 等) 中得到证实。这些磁性元素提供了广泛的局部电子自旋、核自旋和轨道矩选择。 研究主题和可用设施:我们旨在利用 QD 的光学特性来探测和控制嵌入式磁性原子的耦合电子和核自旋的相干动力学。我们将结合射频 (RF) 激发和共振荧光,对单个自旋进行相干控制和探测。实习将专注于开发共振荧光实验,以检测无应变 QD 中 Mn 原子耦合电子和核自旋的磁共振。我们还将开始模拟微柱腔中共振驱动磁性 QD 的光信号自旋诱导波动,这是未来正在开发的自旋光子器件尺寸确定的必要步骤。我们将分析连续共振光学读出下的量子动力学,以展示量子芝诺效应如何有助于增加此类系统中量子信息的存储时间。与我们的合作伙伴合作,我们还将研究具有较大自旋应变耦合的磁性离子 (Cr 2+ 、Co 2+ ),这些离子可以通过表面声波的应变场进行相干控制。我们将致力于模拟局部应变分布对点磁光光谱的影响,以估计它们的自旋应变耦合。实验将在配备磁光低温恒温器(1.5 K、9T/2T 磁体、光学和射频接入)、可调单模和脉冲(ps)激光器(用于共振光激发)和高分辨率光谱仪(用于检测)的微型光谱设备上进行。参考文献:L. Besombes 等人,Phys. Rev. B 107, 235305 (2023) ;V. Tiwari 等人,Phys. Rev. B 106, 045308 (2022) ;V. Tiwari 等人,Phys. Rev. B Letter 104, L041301 (2021) 。可能的合作和交流:这项工作将在 NanoPhysique et Semi-Conducteurs 小组(NPSC,法国国家科学研究院/尼尔研究所和 CEA/IRIG 与筑波大学和华沙大学合作,对部分样品进行了培养。 是否可继续攻读博士学位:是 所需技能:硕士 2(或同等学历),具备固体物理学(电、光、磁特性)、量子力学、光学、光物质相互作用方面的丰富知识。 开始日期:2024 年 3 月(灵活) 联系人:L. Besombes,尼尔研究所,电话:0456387158,电子邮件:lucien.besombes@neel.cnrs.fr 更多信息:http://neel.cnrs.fr