指示(续)去除油脂中的油脂以进行处理。冲洗金属以打破表面张力并冲走松散的污垢。通过刷子,喷雾或浸入将去除剂施加。清洁零件,并在重新组装之前干燥。注意:使用塑料,玻璃或不锈钢容器。清洁前由可移动零件组成的拆卸单元。从铁或钢中溶解生锈:根据需要施加去除剂以穿透锈蚀。化学作用立即开始。清洁时间会因生锈而异。中等至轻锈将在30分钟或更短的时间内溶解,而较重的沉积物可能需要第二次应用。铝/铬:将去除剂施加到湿表面。让时间清洁,然后用干净的水冲洗,用布抛光。镀锌:表面不间断的地方,如铝所建议的。在表面显示生锈的地方,将其视为铁或钢。通过施加去除剂,可以适当准备新的镀锌,从而使3-5分钟工作,然后清洁表面。浴室/淋浴/厕所清洁剂:将大多数钙,石灰和其他硬水污渍溶解在瓷器,瓷砖,玻璃纤维和玻璃上。将去除剂直接喷到表面上。静置5分钟。用刷子搅拌将加快穿透力。去除污渍时用水冲洗。自动冷却系统:在系统中循环时去除氧化物和生锈。清洁动作完成后,用淡水冲洗系统,并用冷却液补充。注意!含有磷酸。严重的眼睛和皮肤刺激性。如果与眼睛或皮肤接触,请与水冲洗至少15分钟。如果刺激持续存在,请寻求医疗护理。如果吞咽,取大量水。不要引起呕吐。获取医疗护理。远离儿童。
std。#标准文本HS-PS1-1使用元素周期表作为模型,以根据原子最外面能级的电子模式来预测元素的相对特性。澄清声明:可以从模式预测的性质的示例可能包括金属的反应性,形成的键类型,形成的键数以及与氧气的反应。评估边界:评估仅限于主要组元素。评估不包括对电离能量超出相对趋势的定量理解。hs-ps1-2构建并修改了基于原子最外部电子状态,元素周期表中的趋势以及对化学性质模式的知识的简单化学反应结果的解释。澄清陈述:化学反应的实例可以包括钠和氯,碳和氧气或碳和氢的反应。评估边界:评估仅限于涉及主要组元素和燃烧反应的化学反应。HS-PS1-3计划并进行研究以收集证据,以比较宏观和微观尺度上物质的结构,以推断颗粒之间的电力强度。澄清陈述:重点是理解粒子之间力的强度,而不是命名特定分子间力(例如偶极偶极子)。颗粒的示例可能包括离子,原子,分子和网络材料(例如石墨)。物质性质的示例可以包括熔点和沸点,蒸气压和表面张力。评估边界:评估不包括Raoult的蒸气压力计算。HS-PS1-4。开发一个模型,以说明从化学反应系统中释放或吸收能量取决于总键能的变化。澄清声明:重点是化学反应是影响能量变化的系统。模型的示例可能包括分子级图和反应图,显示反应物和产物的相对能量的图,以及显示能量的表示。
典型物理性质 以下数据是在巴斯夫公司实验室测得的。它们并不代表对我们销售产品的任何具有法律约束力的性质保证。值 倾点,℃ -68 闪点(COC),℃ 215 气味 温和 表面张力,mN/m 30.5 溶液温度,℃ 154 塑溶胶凝胶温度,℃ 150 蒸汽压@20℃,mbar < 0.01 溶解度@25℃,水中,mg/L < 0.01 粘度和密度数据 温度(℃) 动态粘度(cP) 密度(g/cm³) -40 1,173 0.968 -30 426 0.960 -20 188 0.952 -10 92.8 0.945 0 51.2 0.937 10 30.9 0.930 20 20.0 0.923 40 9.94 0.908 60 5.80 0.894 80 3.78 0.879 描述 Plastomoll ® DNA 是一种高效增塑剂,可赋予基础树脂出色的低温柔韧性和抗冲击性。因此,它广泛应用于基于乙烯基、硝化纤维素和橡胶的聚合物体系。用 Plastomoll ® DNA 增塑的乙烯基比用 DOA 增塑的挥发性小得多。它可溶于通常的有机溶剂,可与乙烯基中常使用的所有单体增塑剂混溶和兼容。 应用 Plastomoll ® DNA 可用于需要出色冷柔韧性和低挥发性的应用。 安全 Plastomoll ® DNA 不需要特殊处理。请按照良好的工业卫生和安全规范进行处理。佩戴个人防护设备,避免接触眼睛。如果发生眼睛接触,请用流动的水冲洗并联系医生。避免反复或长时间接触皮肤。提供足够的通风,避免吸入蒸气。有关安全的详细信息,请务必参考安全数据表 (SDS)。储存和处理 Plastomoll ® DNA 可在 40°C 以下储存一年(若排除水分)。包装 Plastomoll ® DNA 可散装、罐车或火车运输。
标准# 标准文本 HS-PS1-3 计划并开展调查,收集证据,比较宏观和微观尺度上物质的结构,推断粒子间电力的强度。澄清声明:重点在于理解粒子间力的强度,而不是命名特定的分子间力(例如偶极子 - 偶极子)。粒子的例子可以包括离子、原子、分子和网络化材料(例如石墨)。物质性质的例子可以包括熔点和沸点、蒸气压和表面张力。评估范围:评估不包括拉乌尔定律对蒸气压的计算。HS-PS2-1 分析数据以支持以下说法:牛顿第二运动定律描述了宏观物体上的净力、其质量和加速度之间的数学关系。澄清声明:数据示例可以包括受到净不平衡力作用的物体的位置或速度随时间变化的表格或图表,例如下落的物体、从斜坡上滑下的物体或被恒定力拉动的移动物体。评估范围:评估仅限于一维运动和以非相对论速度运动的宏观物体。HS-PS2-2 使用数学表示来支持以下说法:当系统上没有净力时,物体系统的总动量守恒。澄清声明:重点在于相互作用中动量的定量守恒及其定性意义。评估范围:评估仅限于两个在一维运动的宏观物体系统。HS-PS2-3 运用科学和工程思想来设计、评估和改进一种装置,以最大限度地减少碰撞过程中对宏观物体的力。 * 澄清声明:评估和改进的例子包括确定设备在保护物体免受损坏方面的成功程度以及修改设计以改进设备。设备的例子包括橄榄球头盔或降落伞。
标准# 标准文本 HS-PS1-3 计划并进行调查,收集证据,比较宏观和微观尺度上物质的结构,推断粒子间电力的强度。澄清声明:重点在于理解粒子间力的强度,而不是命名特定的分子间力(例如偶极子 - 偶极子)。粒子的例子可以包括离子、原子、分子和网络材料(例如石墨)。物质性质的例子可以包括熔点和沸点、蒸气压和表面张力。评估范围:评估不包括拉乌尔定律对蒸气压的计算。HS-PS2-1 分析数据以支持以下说法:牛顿第二运动定律描述了宏观物体上的净力、其质量和加速度之间的数学关系。澄清声明:数据示例可以包括受到净不平衡力作用的物体的位置或速度随时间变化的表格或图表,例如下落的物体、从斜坡上滑下的物体或被恒定力拉动的移动物体。评估范围:评估仅限于一维运动和以非相对论速度运动的宏观物体。HS-PS2-2 使用数学表示来支持以下说法:当系统上没有净力时,物体系统的总动量守恒。澄清声明:重点在于相互作用中动量的定量守恒及其定性意义。评估范围:评估仅限于两个在一维运动的宏观物体系统。HS-PS2-3 运用科学和工程思想来设计、评估和改进一种装置,以最大限度地减少碰撞过程中对宏观物体的力。 * 澄清声明:评估和改进的例子包括确定设备在保护物体免受损坏方面的成功程度以及修改设计以改进它。设备的例子包括橄榄球头盔或降落伞。评估范围:评估仅限于定性评估和/或代数运算。
镀仑及其合金在近年来引起了人们的关注。[1,2]尽管凝胶的熔点为29.8°C,但它可以与其他金属合金(例如impium(in)和TIN(SN)(SN)合成,以进一步降低其熔点。在过去的十年中,特定的焦点一直放在共晶的gal- lium im依(Egain; 75 wt%ga,25 wt%in;熔点:14.2°C)和galinstan(68.5 wt%ga,21 wt%,21 wt%,21 wt%in,10 wt%sn; 10 wt%sn;熔点:13.2°C)。[3]这些基于甘露的液体金属合金具有包括高电导率在内的金属的证明(约3.4×10 6 s m-1,比铜低约17倍),低粘度(大约是水的粘度的两倍),高表面张力(大约600-700-700-700 mn-m-nm-n m-nm-n m-nm-n m-n m-n m-n m-n m-n m-n m-n m-n m-n m-n ligible vapor and pa pa and pa pa and paepers),<<10 - <处理无需在烟雾罩中工作。[4] Gal-Instan和Egain在微电力机械系统和微富集学中引起了人们的关注,其应用,包括可拉伸的电子设备,[5,6]可重新配置的天线,[7,8]软机器人和可穿戴设备,[9-11]微流体的固定器,[9-11]微流体 - 液化剂,[12,14-14] [12,1,3] [12,-1--13]。液滴发生器。[15,16]由于固有的挑战,诸如将液体金属注入微通道内部,因此由于它们的高表面十足,液滴发生器允许可重复生成可配置尺寸的液滴的生成仍然具有挑战性。这样的液滴发生器将为执行器等应用的纳米和微螺旋铺平道路,[17,18]泵,[19,20]触觉设备,[21]
上午 8:00 – 上午 9:57 并行会议 A01 焦点会议:流体 接下来:软体撞击流体 I Sagamore 宴会厅 1–7 A02 空气动力学:常规 130 A03 主动物质 I:主动湍流 131 A04 动脉瘤 132 A05 动物飞行:飞行昆虫 I 133 A06 高雷诺数游泳 I 134 A07 生理、发声和言语 135 A08 气泡:常规 136 A09 CFD:浸入边界法 I 137 A10 粒子-湍流相互作用 I 138 A11 声学:常规 139 A12 颗粒流 I 140 A13 生物流体动力学:生理 I 141 A14 自由表面流:常规142 A15 实验技术:生物和多相测量 143 A16 流动控制:概述 144 A17 流动不稳定性:多相流和瑞利-泰勒 145 A18 喷射流 I 205 A19 非牛顿流:理论与建模 206 A20 非线性动力学:库普曼和相关方法 207 A21 湍流:湍流建模的机器学习方法 I 208 A22 多孔介质流:对流和传热 231 A23 自由表面流:自然流 232 A24 反应流:LES 和 DNS 233 A25 表面张力效应:界面现象 I 234 A26 波:非线性动力学与湍流 235 A27 涡旋动力学:概述 I 236 A28 CFD:不确定性量化和机器学习 237 A29 液滴:电场效应 238 A30 液滴:超疏水表面和多液滴相互作用 239 A31 流动不稳定性:复杂流体 240 A32 地球物理流体动力学:大气 241 A33 微/纳米流动:通道 242 A34 相变 I 243 A35 一般流体动力学:越过障碍物的流动 244
,尤其是识别软导管技术。[3,4]甘露和甘露的液体金属(LMS)引起了人们的关注。[5]利用其接近室温的液体 - 固体相变(t = 29.8°C)和较大的电导率(> 3×10 6 s m-1),使用了LMS,通常嵌入有机硅载体中,作为伸展的电导导体,以携带电力和信息或传输器具有多个功能。[5-10]由于其综合流变性,弹性地下的LMS尚未被广泛用于可靠,高性能,微型电路,这是由于开发与基于晶相的微技术相兼容的构图技术的挑战。[11] LMS在暴露于空气时形成薄(≈1–3 nm厚),表面固体氧化物皮肤。[12–14]氧化物平衡LMS的高表面张力并允许大多数表面润湿。这种现象是阻止当今LM电子技术的大型工业规模整合的主要阻碍因素之一。已经开发了几种技术来克服LM膜导体的生产性限制。[11,15,16]在一种方法中,LM图案是通过破裂氧化物皮肤,形成所需形状并通过氧化物皮肤再生而稳定的。3D和转移印刷技术依赖于这种氧化物皮肤稳定化来证明具有微观分辨率的痕迹。也证明了基于激光消融的类似方法,用于制造可扩展和高分辨率的LM网格。[17–20]但是,这种方法尚未被证明与大区块(> cm 2)电路的兼容,或者不能对LM Morphology提供足够的控制,因此无法保证高可扩展性(> 30%)。[21]激光微加工可以使高分子LM导体跟踪到4 µm线宽,但这种“串行”技术与大金属化密度绘制不相容。在另一种方法中,氧化物皮肤的生长要么通过真空处理下的加工或化学去除以允许在粘附层上润湿LM以增加与基材的亲和力。通过在金属润湿层上选择性电镀LMS来形成可拉伸(> 100%伸长)和狭窄(5 µm)图案的图案。[22]但是,大区域上的高分辨率电路尚未实现。
薄膜沉积、微米级图案化以及制造低应力薄膜的能力相结合,构成了表面微机械结构,其特征具有柔顺性,并且彼此或与基板紧密贴合。如果一个柔顺特征与相邻特征或基板接触,则表面之间可能会发生永久粘附。这可能发生在两个不同的时间。首先,当结构在牺牲释放蚀刻后干燥时,相邻表面毛细管状空间中截留的液体弯月面减少产生的表面张力可以将特征拉向彼此或基板 1, 2。强粘附力(在微力学中称为粘滞力)可能导致设备永久粘附,从而导致设备干燥后产量低得令人无法接受。表面也可能相互接触并在稍后的时间(例如在设备运行期间)保持粘连,从而导致可靠性故障。这两种故障中的后者可能成本更高。已经提出了各种机制来解释粘连的原因 1-6 。据报道,从冲洗液中沉淀出来的固体杂质会粘附两个表面,这是原因 1, 2 。结果表明,疏水设备之间的粘连的主要方式是通过范德华力,而范德华力和氢键都是造成亲水表面粘连的原因 3 。其他研究表明,多晶硅表面的吸附水是造成粘连的原因 4, 5 。静电吸引力也被认为是造成粘滞的原因 6 。有关粘滞力的综述,请参阅参考文献 2 和 3。已经做了大量工作来解决表面微机械结构中的粘滞故障 7-25 。除了保持无杂质的释放和冲洗工艺外,还应用了许多技术来提高产量和长期可靠性。冷冻升华是一种常用的提高产量的技术 7-11 。使用这种方法,将设备浸入溶剂(或溶剂混合物)中,然后冷冻。通过升华固化的溶剂(或溶剂混合物),可以避免液-气界面。Guckel 等人首次使用 MeOH 和 H 2 O 混合物进行冷冻升华来干燥微机械部件。7 。环己烷 8、9、叔丁醇 10 和对二氯苯 11 等溶剂也已升华以干燥设备。其他提高产量的技术包括使用光刻胶 12 或二乙烯基苯 13
通过开放式电池设计将阴极与空气连接起来的必要性与开发挑战有关。首先,锂金属与水反应剧烈,因此需要非水电解质。此外,需要通过透气但防水的膜和阳极侧的无水电解质来避免潮湿。因此,大多数研究都是在完全非水系统上进行的,其中有机电解质用于阳极和阴极侧。然而,有机电解质面临着自身的挑战。由于大多数气体扩散电极 (GDE) 针对水基电解质进行了优化,并使用聚四氟乙烯 (PTFE) 作为非润湿/疏水粘合剂,因此了解有机电解质如何与这些 GDE 相互作用是必要的。多孔系统内的非润湿区域对于提供存在气体、电解质和活性材料的多个三相接触点至关重要。液体用薄膜覆盖活性区域,确保离子传输到活性位点,而非润湿区域确保气体正确传输到活性区域。图 1 显示了 PTFE 附近的水基电解质膜的示意图,以及电流密度与电极表面液膜厚度之间的关系。在 PTFE 附近,仅形成一层薄液膜,阻碍了离子传输(橙色区域)。在电解质层较厚或孔隙被淹没的另一侧,氧气向活性侧的扩散受到长扩散路径的阻碍(黄色区域)。液体中氧气扩散缓慢会导致浓度过电位增加。在这两个区域之间,离子传输和氧气扩散长度之间的最佳平衡可产生最大电流密度(绿色区域)。如果使用具有优异润湿性能的电解质,则绿色区域中的三相区域会减少,多孔系统的电化学性能会降低。最终,完全淹没的电极(几乎所有活性位点都被液体覆盖)会导致性能不佳。[2] 此问题尤其会出现在表面张力低的有机液体中。[3] Wagner 等人研究了缓慢增加电解质渗透的影响。对于碱性燃料电池,他们观察到 PTFE 分解,因此多孔系统内部疏水区域会损失。这降低了三相边界的厚度,5000 小时后电化学性能损失 12-15%
