摘要我们报告了一种新型材料的超导性能:鼻红细胞膜。从X≈3.8探索了Re X Lu Binary的不同组成,以接近纯Re化学计量。根据电子色散光谱结果,获得了x≈10.5的最高临界温度,最高为tc≈7k。取决于沉积条件,可获得多晶或无定形膜,这两种膜对于实际使用而言都很有趣。使用放牧X射线衍射测定法鉴定出多晶相的晶体结构为非中心对称超导体。超导特性在电阻和磁性上都被表征。磁倍率和AC/DC敏感性测量值使我们能够确定这些膜的H C 1和H C 2,以及估计相干长度ξ(0)和磁穿透深度λL(0)。我们还提供有关这些膜表面形态的信息。在该材料中的超导性证明证明了Lu在周期元素表的6周期中扮演3组过渡金属的角色的观点。然后,类似于re – nb,re – ti,re – hf和re – zr,人们可以期望结晶re – lu也打破了时间反转的对称性。如果未来的实验证明了这一点,结合了非中心对称特征,这些膜可用于形成非偏置电流设备,例如超导二极管,而无需外部磁场。
当前研究的目的是制定乙基纤维素和羟基丙基纤维素基于持续的释放微球,其中包含兰索拉唑作为模型药物。兰索拉唑是II型抗粉药剂时,在其作用中显示出协同作用。 通过W/O/O双乳剂 - 溶剂蒸发方法以不同的稳定剂浓度和不同的乳化速度制备微球,同时保持恒定量的兰索拉唑。 药物脱离的兼容性研究是在制剂开发前通过傅立叶转化红外光谱(FTIR)进行的,仅在微球制造中仅使用兼容的赋形剂。 制备的微球制剂的特征是产量百分比,粒度分析,药物夹带效率,通过扫描电子显微镜(SEM),差分扫描比色法(DSC)和维特罗药物释放行为,表面形态。 将兰索拉唑的熔点,溶解度和紫外线分析等预性研究符合IP标准。 通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。 通过改变表面活性剂和速度的浓度来制备微球。 粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。兰索拉唑是II型抗粉药剂时,在其作用中显示出协同作用。通过W/O/O双乳剂 - 溶剂蒸发方法以不同的稳定剂浓度和不同的乳化速度制备微球,同时保持恒定量的兰索拉唑。药物脱离的兼容性研究是在制剂开发前通过傅立叶转化红外光谱(FTIR)进行的,仅在微球制造中仅使用兼容的赋形剂。制备的微球制剂的特征是产量百分比,粒度分析,药物夹带效率,通过扫描电子显微镜(SEM),差分扫描比色法(DSC)和维特罗药物释放行为,表面形态。将兰索拉唑的熔点,溶解度和紫外线分析等预性研究符合IP标准。通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。 通过改变表面活性剂和速度的浓度来制备微球。 粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。通过红外光谱研究进行的兼容性研究表明,药物与聚合物之间没有显着相互作用。微球。粒度的增加,乳化剂浓度增加(SPAN-80)。 以增加的搅拌速度获得较小的尺寸。 有趣的是,观察到粒径对体外药物释放没有显着影响。 因此,乳化剂产生了更好的表面特征。粒度的增加,乳化剂浓度增加(SPAN-80)。以增加的搅拌速度获得较小的尺寸。有趣的是,观察到粒径对体外药物释放没有显着影响。因此,乳化剂产生了更好的表面特征。使用F4公式观察到最高的夹带疗效,其表面活性剂浓度为0.5%,速度为1000 rpm,因此被选为最佳配方。随着恒定表面活性剂浓度下旋转速度的提高,观察到封装效率的提高。在持续旋转速度下的表面活性剂浓度增加会导致药物的封装效率降低。DSC数据表明该药物与两个聚合物之间没有相互作用,这也表明两种药物都分散在无定形状态的聚合物中。SEM研究表明,微球是球形形状,具有粗糙的表面形态,并且发现了颗粒。体外释放曲线在12小时内释放了兰索拉唑的缓慢而稳定的释放模式,发现该药物释放是扩散控制机制,具有Korsmeyer Peppas方程的N值表明非叶酸质量的非叶酸类型。由于这些实验的结果,得出结论,持续释放的微球持续释放的微球通过使用双重乳液 - 溶剂溶剂蒸发技术成功制备了使用乙基纤维素和羟基甲基纤维素作为聚合物的组合。
本研究旨在制备西妥昔单抗 (CTX) 修饰的卡巴他赛 (CBZ) 负载氧化还原敏感的 D-α-生育酚-聚乙二醇-1000-琥珀酸酯 (TPGS-SS) 纳米颗粒 (NPs),用于表皮生长因子受体 (EGFR) 靶向肺癌治疗。使用透析袋扩散法制备 NPs,以产生非氧化还原敏感非靶向 (TPGS-CBZ-NPs)、氧化还原敏感非靶向 (TPGS-SS-CBZ-NPs) 和靶向氧化还原敏感 NPs (CTX-TPGS-SS-CBZ-NPs)。对开发的 NPs 的粒径、多分散性、表面电荷、表面形态和包封效率进行了表征。此外,还进行了其他体外研究,包括体外药物释放、细胞毒性和细胞摄取研究。发现颗粒尺寸和表面电荷分别在 145.6 至 308.06 nm 和 − 15 至 - 23 mV 范围内。CBZ 临床注射剂 (Jevtana ® )、TPGS-CBZ-NPs、TPGS-SS-CBZ-NPs 和 CTX- TPGS-SS-NPs 的 IC 50 值分别为 17.54 ± 3.58、12.8 ± 2.45、9.28 ± 1.13 和 4.013 ± 1.05 µ g/ml,表明与 CBZ 临床注射剂相比,细胞毒性分别增强了 1.37、1.89 和 4.37 倍,表明细胞毒性显著增强。此外,体外细胞摄取调查显示,与纯 CMN6、TPGS-CMN6-NPs 和 TPGS-SS-CMN6-NPs 相比,CTX-TPGS-SS-CMN6-NPs 在 A549 细胞中积累显著。此外,通过超声/光声和 IVIS 成像分析了开发的 NPs 的靶向效率。
表面工程是一个多学科领域,侧重于修改和增强材料表面的特性,以实现所需的功能和性能。它包含了一系列旨在改变材料表面特征而不显着影响其批量特性的技术和过程。表面工程的目的是改善属性,例如硬度,耐磨性,耐腐蚀性,生物相容性,润滑性和电导率等。摘要探讨了表面工程的基本原理,技术和应用。首先要强调各个行业和技术进步的表面特性的重要性。摘要然后讨论表面工程中采用的不同方法,包括物理和化学过程,例如沉积,扩散,离子植入和通过涂层或表面处理。抽象探讨了表面分析技术评估和表征修饰表面的重要性。它强调使用高级分析工具,例如扫描电子显微镜,X射线衍射,原子力显微镜和表面经量仪来研究表面形态,化学组成和机械性能。摘要还展示了各个部门的表面工程的广泛应用,例如航空航天,汽车,电子,生物医学和能源行业。抽象强调了表面工程作为一个关键领域的重要性,弥合了材料科学与工程之间的差距。它突出了表面工程在改善符合极端条件,增强产品功能和启用新技术的组件的性能和耐用性方面的作用。它展示了如何操纵材料的表面特性如何导致各个行业的重大进步,最终推动创新和技术进步。
挥发性腐蚀抑制剂 (VCI) 是为抑制湿气管道顶部腐蚀 (TLC) 而开发的,其注入方法可显著影响所需剂量,从而影响其效率。在本研究中,使用批量和连续注入方法比较了 VCI 的效率。使用 API 5l X65 碳钢级样品进行了一系列 TLC 测试,包括 5 天控制测试、7 天连续注入测试(每 3 天 200 ppm VCI)和 5 天批量注入测试(1000 ppm VCI)。使用重量损失法 (ASTM G1-03) 确定均匀腐蚀速率 (UCR)。使用无限聚焦显微镜 (IFM) 评估点蚀速率 (ASTM G1 46- 21),并使用扫描电子显微镜 (SEM) 分析表面形态特征。总体而言,由于 VCI 浓度剂量不足,两项测试都无法有效抑制腐蚀。然而,批量注入测试的效果优于连续注入测试(UCR:0.40 毫米/年 vs. 0.69 毫米/年;点蚀率:0.70 毫米/年 vs. 3.28 毫米/年),因为它只造成均匀腐蚀。连续注入测试中腐蚀样品的严重程度是由于 VCI 膜部分覆盖顶部试样表面,导致 VCI 局部破裂,从而导致高点蚀率。总之,在这种测试环境中,两种方法都需要更高浓度的 VCI 才能有效降低腐蚀率。
1 PG学者,结构工程,库姆拉古鲁技术学院2库姆拉古鲁技术学院结构工程副教授,库姆拉古鲁技术学院摘要水泥,对建筑至关重要,对重金属污染产生了重大的环境风险,包括铅,钙,铬,铬,镍,镍等。这些金属在水泥生产过程中释放,危害人类健康和生态系统。一种创新的方法涉及利用微生物进行生物修复,将污染物转化为有害形式较小的形式。微生物发展了对重金属的抗性机制,从而降低了水泥中的浓度和迁移率。在该项目中,收集了各种品牌和水泥类型,并培养了不同的细菌。对使用原子吸收光谱(AAS),能量分散X射线分析(EDAX)和扫描电子显微镜(SEM)进行生物治疗前后的机械性能,重金属浓度,元素组成,表面形态和水泥的粒径进行了比较。比较了传统和细菌诱导的水泥样品之间从进行的测试中获得的结果。这种生物技术方法的实施不仅解决了环境问题,而且还促进了建筑中创新和可持续解决方案的发展。关键字:水泥,重金属,生物修复,微生物,原子吸收光谱(AAS),能量分散X射线分析(EDAX),扫描电子显微镜(SEM),可持续性。
在这项研究中,探索了由RGO,Fe 3 O 4和ZRO 2 NP组成的三元纳米复合材料的合成和表征。纳米复合材料可能有助于从水溶液中去除Terasil Black Dye,在这种情况下对纺织业非常重要。纳米复合材料是通过共沉淀法合成的,并与ZRO 2 NP进行了物理键合。X射线衍射(XRD),场发射扫描电子显微镜(FESEM)和能量分散X射线(EDX)分析用于揭示纳米复合材料的结构特性,表面形态和元素组成。从这些信号中,可以推断出存在一个无定形相,如各种晶格平面的强峰位置所示。FESEM图像显示出不规则的粒子形状,并注意到聚集。EDX分析已被用来确认存在成分元素的存在。Giles所说的吸附等温线显示了S形,这意味着染料离子垂直于纳米复合材料的表面。在这些放热吸附过程中,物理较高的体温占优势。此过程遵循Freundlich等温模型,表明在分析吸附数据后存在异质表面积。在此模型中,建议进行化学和物理吸附,随着温度范围的相对贡献的变化而发生。这些发现对RGO /FE 3 O 4 /ZRO 2纳米复合材料具有重要意义,以进行废水处理优化,因为它们阐明了这些材料上染料吸附的动力学和热力学。
摘要:我们提出了一个简单的过程,使用PEDOT使用PEDOT:PSS(Poly(3,4-Eth Ylenedioxythiophene):Poly(styrenenesulfonate))/非氧化的石墨烯以涂上聚酰胺或聚氨酯针织织物,以便于智能医疗保健。电导性纺织品。随后,根据PEDOT的比率:PSS/非氧化的石墨烯复合材料(1.3 wt%:1.0 wt%:1.3 wt%; 1.3 wt%:0.6 wt%:0.6 wt%; 1.3 wt%; 1.3 wt%; 1.3 wt%:0.3 wt%:0.3 wt%)和应用程序数量(一次,或跨度)(又一次)。通过Fe-Sem观察到标本的表面形态。此外,使用FTIR和拉曼光谱法对其化学结构进行了表征。通过四点接触进行的样品的电特性测量(板电阻)显示了对非氧化石墨烯的电导率增加以及复合系统中的应用数量。此外,对织物的机械性能的测试表明,PEDOT:PSS/非氧化石墨烯处理的织物表现出比未经处理的样品的伸长率更低,恢复原始长度的能力更低。此外,通过执行拉伸操作1,000次,拉伸强度为20%,测试了PEDOT:PSS/非氧化石墨烯聚酰胺/聚氨酯针织织物;因此,传感器保持恒定电阻而没有明显的损坏。这表明PEDOT:PSS/非氧化的石墨烯应变传感器具有足够的耐用性和电导率,可以用作智能可穿戴设备。
摘要:目前的实验研究旨在确定蜗牛壳颗粒聚酯复合材料的介电性能。蜗牛壳(SNS)材料被获取,洗涤,晒干,磨成粉末,并筛成300μm的筛分级。使用手上色方法制成的具有10、20、30、40和50 wt%的蜗牛壳颗粒的重量分数。X射线衍射仪(XRD)分析表明,蜗牛壳颗粒包含以下元素:C,O,Na,Mg,Al,Si,K和Ca。SEM揭示的蜗牛壳颗粒复合材料的表面形态证实了颗粒本质上是坚实的。TGA/DTA分析揭示了SNS颗粒复合材料的热稳定性。测试和分析的性能是:介电强度,介电常数,电阻率,水分含量和吸水能力。研究了填充变化对上述特性的影响,并用作评估复合材料的标准。分别分别为10 wt%,30 wt%和50 wt。%蜗牛壳颗粒聚酯复合材料观察到最大介电强度,介电常数和电阻率。还观察到50 wt%样品的水分含量和吸水值最高。它显示出吸水能力和水分含量的10-50 wt%的逐渐增加。蜗牛壳颗粒的测量特性 - 聚酯复合材料与某些标准绝缘子相当。因此,它们可以用作使用的常规标准绝缘子的替代介电。
摘要。在这项研究中,采用了一种便捷的策略,用于从聚苯乙烯(PST),聚氨酯(PU),聚(PMMA甲基丙烯酸甲酯)(PMMA)及其有机模型ED Zn Al LDH(分层双羟基)的有机模型(PMMA)合成衍生物(PMMA)(PMMA)(PMMA)。为此,首先,通过Zn-Al-ldH的阴离子交换反应对十二烷基磺酸钠(SDS)修饰LDH纳米颗粒。其次,从由9-十核1- ol组成的溶剂中获得PU宏引诱剂,并用于将苯乙烯单体与ORD PU-puco-pST共聚物共聚的控制移植共聚。然后,合成的puco-st被N-溴糖二酰亚胺(NBS)溴化以获得与溴基团的共聚物。在以下情况下,在存在溴化puco -st和cubr/bpy(2,2 0 -bipyridine催化剂的情况下,都可以制备(PMMA -G -PST- G -PU)Terpolymer。最后,(PMMA -G -PST -G -PU)/ZNAL LDH纳米复合材料通过溶液互化方法成功合成。fe-Sem图像显示,Zn-Al(SDS)和Zn-Al-LDH的表面形态导致片状和六边形形态。使用DSC和TGA对热性质进行研究表明(PMMA-G -PST-G -PU)/Zn-Al-LDH纳米复合材料与整洁的PU相比具有更高的热稳定性。合成的Terpolymer和(PMMA-G -PST-G -PU)/Zn-Al-LDH纳米复合材料由于其高LDH特性而被用作聚合物纳米复合材料的增强剂。©2024 Sharif技术大学。保留所有权利。