摘要 神经影像学研究对神经性厌食症 (AN) 一直报告称,急性 AN 患者的整个脑部灰质减少。虽然对青少年 AN 患者的首次研究提供了体重增加后这些损伤可逆性的证据,但缺乏对成年 AN 患者的纵向研究和详细的区域分析,而且与大脑恢复相关的因素也知之甚少。我们使用基于表面形态测量的 T1 加权磁共振图像研究了神经性厌食症的结构变化。样本包括 26 名患有严重 AN 的成年女性和 30 名健康对照者。纵向设计包括三个时间点,捕捉了 AN 患者在不同体重增加阶段(BMI ≤ 15.5 kg/m 2;15.5 < BMI < 17.5 kg/m 2;BMI ≥ 17.5 kg/m 2)的体重恢复治疗过程。与对照组相比,AN 患者在基线时显示出整体皮质厚度和皮质下体积减少。线性混合效应模型揭示了这些改变的可逆性,在治疗的前半段,大脑恢复最为明显。AN 患者皮质厚度的恢复与年龄呈负相关,但与患病时间无关。体重恢复后,皮质厚度的残留组差异仍然存在于上额叶皮质中。这些发现表明,在体重恢复治疗期间,成年严重 AN 患者的大脑结构性改变与患病时间无关。大脑恢复的时间模式表明,在治疗过程中恢复率会降低,患者的年龄是大脑恢复的有力预测因素,可能反映了患者年龄增长后大脑可塑性的下降。
金属和合金的腐蚀是化学和工艺行业遇到的最常见问题之一。效率低下的腐蚀控制措施通常会导致计划外的停机时间,巨大的经济损失,环境损失以及健康和安全危害的风险增加。因此,对于现有有毒的抗腐蚀剂剂,开发环境友好和具有成本效益的腐蚀抑制剂至关重要。这项工作的主要目的是在酸性环境下以不同的浓度来检查不同浓度的Mangifera Indica叶(MIL)的环保乙醇提取物(MIL)的功效。通过常规减肥方法以及吸附等温线分析评估了1M盐酸(HCL)中Mangifera iNIFAS叶提取物的抑制效率。使用傅立叶变换红外光谱(FTIR)和田间发射扫描电子显微镜(FE-SEM)评估了叶提取物中存在的化合物,并评估了SS-316L样品的表面形态的变化。减肥方法的结果表明,由于表面覆盖率较高,抑制效率随着MIL提取物浓度的增加而增加。在14天内的最高抑制效率近63.43%,在1.0 m HCl中,SS-316 L每年获得0.433 mm的最小腐蚀速率,浓度为1000 ppm。MIL提取物在SS -316L表面上的吸附,遵循Freundlich吸附等温线,并获得吸附的自由能的获得值(∆g˚ADS= - 9.20 kj.mol -1)表示物理吸附机制。开发的基于回归的模型可以以良好的精度(> 80%)预测腐蚀速率与抑制剂浓度和暴露时间的函数。因此,目前的发现表明,叶叶提取物可以适当地用作一种廉价,无毒,可生物降解,有效的绿色腐蚀抑制剂,以保护酸性培养基中的不锈钢。
本论文研究了氧化锌(ZnO)对天然聚合物纳米流体的热层特性的影响。重点是与掺入ZnO纳米颗粒的果胶纳米流体。在本实验中,将不同浓度的氧化锌(ZnO)与恒定量的果胶结合在一起,以研究其对最终溶液特性的影响。最初,ZnO和果胶溶液单独制备并进行杂志搅拌和超声处理。实验涉及三种不同的ZnO:0.1 g,0.02 g和0.03 g,而果胶的重量在整个过程中保持在0.05g。在单个制备后,将溶液混合,进一步搅拌并进行超声处理。采用两种分析技术,即扫描电子显微镜(SEM)和热重分析(TGA)来表征样品。sem提供了对表面形态和化学组成的见解,而TGA分析了质量变化而不是温度变化,提供了有关材料特性的宝贵信息。讨论了这些技术在材料表征和分析中的重要性和应用,突出了它们在理解物理和化学现象中的作用。ZnO纳米颗粒的存在增强了果胶纳米流体的热稳定性。接触角度测量以评估纳米流体的亲水性。接触角趋势表明疏水性增加,果胶纳米流体中ZnO的浓度增加。测量接触角支持合成纳米流体的高稳定性。总体而言,这项研究为将ZnO纳米颗粒掺入果胶纳米流体及其对热物理特征的影响提供了宝贵的见解。这些发现有助于开发纳米流体,以用于药物释放和生物医学领域的潜在应用。
摘要 - 这项工作报告了硫的应用 - 钝化发射极和后接触(PERC)太阳能电池的应用。发射极表面被硫化氢(H 2 s)气相反应钝化,并用氢化的非晶硅(A-SIN X:H)层盖住。在对称的N+扩散的发射极上的硫钝化显示导致发射极饱和电流密度(J 0N+)在R板,n+≈100Ω/sq处的30 fa/cm 2。在PERC细胞结构中,S-钝化在发射极表面上的应用,后表面被氧化铝(Al 2 O 3)/A-Sin X:H堆栈钝化,在金属化前显示了有希望的隐含敞开电压(IV OC)为686 mV。该IV OC高于A-SIN X:H或SIO 2 /A-SIN X:H钝的发射极表面(分别为675和674 mV),在同一运行中处理的PERC细胞上。然而,在用激光图案,屏幕打印的金属接触沉积和射击的设备制造后,观察到S-Papsiviving Perc细胞的细胞V OC显着下降。尽管如此,用硫的发射极表面实现了〜20%的效率和〜650 mV的V OC。我们确定760 O C接触触发过程降低了S-抑制质量。研究了表面形态,并进行了详细的表面分析以研究S-PASSITITIVIVITINED表面降解的原因。索引项 - N +扩散的发射极,硫化氢反应,丝网印刷金属接触射击,X射线光电子光谱,P-PERC细胞。
为了最大程度地减少或消除沟槽,最好有利于蚀刻过程的化学成分。因此,我们决定继续使用ICP-RIE进行O 2等离子体蚀刻,这是因为在表面形态和各向异性蚀刻方面具有令人鼓舞的结果,因此我们已经研究了血浆参数的影响ICP和偏置功率,尤其是使用两种类型的口罩:铝和硅二氧化物(Sio-dioxide)(Sio 2)。3- O 2在Sentech Si500-Drie设备上进行了用铝面膜钻石蚀刻的等离子体蚀刻。测试样品是(100)方向的单晶CVD钻石底物和元素六的3 x 3 mm 2尺寸。第一步涉及溶剂和酸的化学清洁,以去除可能影响蚀刻和产生粗糙度的污染物。然后将钻石底物涂在光线器上,并用激光光刻降低,以定义掩模图案。然后通过热蒸发沉积700 nm厚的铝面膜。金属薄膜,例如铝,由于其在钻石上的良好粘附性[24]及其良好的蚀刻选择性[25],因此将其用作单晶钻石蚀刻的硬面膜材料。此外,由于血浆中的寿命不足,尤其是在氧气中,因此与光致剂相比,金属面膜仍然是更好的选择。3.1 o 2等离子蚀刻的p icp = 500W和p偏见= 5W我们研究的第一个蚀刻条件是:p icp = 500 w,p sial = 5 w,压力= 5吨,气体流量= 25 sccm,温度= 18°C。每个蚀刻步骤都限制为30
目的:这项研究的目的是开发抗炎剂槲皮素(QU)的结肠靶向纳米关节系统,并评估各种参数的公式,这些系统可以通过更好的药物和治疗性能在预定的时间和位置释放活性成分。材料和方法:使用中央复合材料设计使用离子胶化方法为此目的制定了槲皮素负载的壳聚糖纳米颗粒。在优化的槲皮素装载壳聚糖纳米颗粒(QLCN)的配方中涂上Eudragit S 100(ES 100),使用了油溶剂蒸发过程中的油。粒径(PS),多分散性指数(PDI),扫描电子显微镜(SEM)和药物释放(%DR)以表征纳米颗粒。结果:槲皮素加载的壳聚糖纳米颗粒的平均PS 114.2±1.42 nm和多分散指数0.396±0.02,而Eudragit涂层纳米颗粒显示PS 330.2±0.40 nm和Polydispersity Index 0.412 0.412±0.412±0.02。使用SEM证实制备的纳米颗粒的表面形态。根据对纳米结构制剂的体外药物释放分析,QLCN上的ES 100涂层抑制了胃肠道上层系统中槲皮素的释放,表现出良好的结肠药物靶向。结论:根据纳米颗粒制剂的体外释放研究,QLCN上的ES 100涂层限制了槲皮素在上层胃肠道系统中的释放,显示有效的结肠药物靶向。
标题:从可生物降解的金属表面启用降解触发的释放。杂志:生物医学材料研究杂志 - B部分应用生物材料,第109卷,第12期,2021年12月。文档类型:文章作者:Abdul Hakim MD Yusop,Ahmed Alsakkaf,Muhammad Azfar Noordin,Hasbullah Idris,Hadi Nur,Fatihhi Szali januddi Mohdalfatihhi@unikl.unikl.unikl.unikl.unikl.my.my Full Text Link链接:Unikl ir:unikl ir:unikl ir:unikl ir:unikl ir:unikl ir: https://ir.unikl.edu.my/jspui/handle/123456789/25615出版商:https://onlinelibrary.wiley.com/doi/doi/abs/10.1002/jbm.b.34866 scopus scopus preview:: https://www.scopus.com/record/display.uri?eid=2-S2.0- 85105635140&doi = 10.1002%2fjbm.b.34866&orward = inward = inward = inward&inward&inward&txgid = 451E79625C79625C7387B35C35C2272BAC272BAC26B726B726B72BACA 272BACA通过直接从可生物降解的金属表面降解对药物释放控制的研究。以表面形态,浸入和电化学技术为特征的降解行为表明,与姜黄素涂层的Fe(C-FE)相比,姜黄素涂层锌(C-ZN)的降解速率更高。由于较高的降解速率和C-ZN的类似凹槽样降解结构引起的高阳极溶解速率推动了较高的姜黄素释放。另一方面,C-FE支架所示的姜黄素释放速率较慢,归因于其较低的阳极溶解液,以及其凹点降解状态,其凹坑的凹点相对较小。这些发现阐明了可直接控制药物释放的无需外部电气刺激的可降解金属表面的不同降解行为的显着优势。
木质素是地球上第二大的生物聚合物,有可能成为石油衍生材料的替代品。它由于其芳香结构以及众多酚类,酮和分子内氢键的存在而表现出出色的UV吸收能力。由于其复杂的性质,重要的是要研究其性质,这是朝着木质素重价的非常重要的一步。揭示其结构复杂性可以更好地研究其对最终木质素材料特性的影响。在我们的研究中,我们使用了两种不同的牛皮纸木质素:商业分析牛皮纸木质素(AL)和工业木质木质木质蛋白(AL)和基于二甲烷二甲酸(二硫酸酯)的BPA(Bisphenol a) - 无聚合物涂料的BPA(Bisphenol A)中的UV-PROTECT添加剂。KL和Al的最大添加为2 wt%。详细介绍了两个木质素样品(组成分析,灰分含量,摩尔质量和多分散性,表面形态,热性质以及羟基含量的定量测量)。我们提出了木质素对涂料的质地和热性能的影响。最后,我们研究了木质素作为通过UV-VIS电子吸收光谱的增值UV保护成分的应用。kl纯度较高,脂肪族OH的数量较高,在聚合物基质中比Al木质素具有更好的分散体,而Al木质素在聚合物基质中具有更大的凝聚。更好的色散导致在KL制成的涂层中产生更光滑的表面。最后,证明了KL添加剂对涂料材料的光保护性能的显着和显着影响。这些结果表明,可用的工业木质素对可持续和增值产品的价值有潜在的应用和机会。
将稀释的需要二氮浓度掺入传统的III – V合金中会产生带隙能量的显着减少,从而在菌株和带隙工程中带来了独特的机会。然而,宿主基质的理想生长条件与替代二氮的理想生长条件之间的差异导致这些III – V – BI合金的材料质量落后于常规III – V半导体的材料。INSB 1 x BI X虽然在实验上尚未进行,但由于INSB和III – BI材料的理想生长温度相对相对相似,因此是高质量III – V – BI合金的有前途的候选者。通过识别高度动力学上有限的生长状态,我们通过分子束外延展示了高质量INSB 1 x BI X的生长。X射线衍射和Rutherford反向散射光谱法(RBS)测量合金的二晶浓度,并与光滑的表面形态结合,通过原子力显微镜测量,表明Unity-sticking Bismuth掺入了从0.8%到1.5%到1.5%的bismuth浓度,均为0.8%至1.5%。此外,从INSB 1 x BI X中观察到了第一次光致发光,并在230 K时显示了高达7.6 L m的波长延伸,二匹马诱导的带隙还原为29 MeV/%bi。此外,我们报告了INSB 1 x BI X的带隙的温度依赖性,并观察到与传统III – V合金相一致的行为。提出的结果突出了INSB 1 x BI X作为访问Longwave-Infrared的替代新兴候选者的潜力。
该研究使用各种技术(如发芽、烹饪、高压灭菌和微波)调查了 60ppm 银纳米粒子 (AgNPs) 对红芸豆的影响。与未处理的生样品相比,用银纳米粒子处理的样品的成分发生了变化,蛋白质、脂肪和碳水化合物含量发生了显著变化。在用银纳米粒子处理的发芽豆中观察到最高的总酚含量 1.59 mg 没食子酸/g、黄酮类化合物含量 445.2 mg 儿茶素和抗氧化活性 89.0%。胰蛋白酶抑制剂含量范围为 0.04 至 2.83 mg/g,在生豆中观察到最高值,在用银纳米粒子处理的发芽豆中观察到最低值。单宁含量从 0.40 到 1.26 mg/g 不等,植酸含量范围从 1.09 到 4.18 mg/g,在 GA 处理的豆中含量最低。生豆中的含量最高。此外,成像分析显示,用 AgNPs 处理过的豆子表面结构发生了明显变化。发芽的豆子显示 AgNPs 粘附或穿透种皮,从而改变了表面形态。煮熟的豆子表面显示 AgNPs 聚集,表明加热后分布发生了变化。微波处理的豆子显示出微波诱导效应,可能由于局部加热导致 AgNPs 分布不均匀和簇形成。高压灭菌会引起豆子的结构变化,AgNPs 与表面相互作用形成聚集体或沉积物。而用 AgNPs 处理豆子会导致 FTIR 光谱图发生变化,例如峰位置或强度发生变化,或者某些波段出现或消失。