可以使用XEP数据采集软件直接从可访问的信号通道中读取直流悬臂偏转信号。可以通过将信号发送到锁定放大器来读取悬臂偏转信号的交流部分,该放大器可以以ω频率读取信号的部分,或以2Ω频率读取信号的部分。一起,这三个信号可用于获取有关样品电气特性的信息。例如,电容在方程式中以电容与尖端间距的比率为c/d。如果Z反馈回路保持尖端到样本距离恒定,则C/D与电容成正比。ω信号是上面公式(2)中标记的术语(b)的系数,包含C/D和表面电势的贡献。假设V DC和V AC是已知的,您仍然无法将电容的贡献和对测量ω信号的表面电势分开。然而,2Ω信号是上面标记(c)的术语的系数,仅包括电容的贡献。因此,2Ω信号可用于使Ω信号归一化,从而隔离表面电势的贡献。
抽象目标。从脑表面的神经活动的电记录已广泛用于基础神经科学研究和临床实践中,用于研究神经回路功能,脑部计算器界面和神经系统疾病的治疗方法。传统上,这些表面电位被认为主要反映了局部神经活动。尚不清楚在多个皮质区域的神经活动中本地记录的表面电位有多信息。方法。为了调查这一点,我们在清醒的头部固定小鼠中同时进行局部电气记录和宽场钙成像。使用复发性神经网络模型,我们尝试从局部电记录中解码多个皮质区域的钙荧光活性。主要结果。可以从局部记录的表面电位解码不同皮质区域的平均活性。此外,每个表面电势的频带差异地编码了来自多个皮质区域的活性,因此在解码模型中包括所有频段都具有最高的解码性能。尽管记录通道之间的间距很紧密,但来自不同通道的表面电势提供了有关大规模皮质活动的互补信息,并且随着更多的通道包括更多的通道,解码性能仍在继续改善。最后,我们使用局部记录的表面电势证明了像素级上整个背皮层活性的成功解码。意义。这些结果表明,本地记录的表面电位确实包含了大规模神经活动的丰富信息,可以进一步将其解散以恢复各个皮质区域的神经活动。将来,我们的交叉模式推断方法可以适应实际上重建宽皮质的大脑活动,从而大大扩展了表面电记录的空间范围而不会增加侵入性。此外,它可以用来促进自由移动动物的整个皮质中的神经活动,而无需进行头部固定显微镜构型。
摘要:环境压力X射线光电子光谱(APXPS)与同时的电气测量结合,并由密度功能理论计算支持,以研究Operando动力学中基于基于气体的Tungsten二硫化物(WS 2)的感应机制。这种方法允许在现实的工作条件下的表面电势变化与WS 2传感活动层的电阻率之间的直接相关性。着眼于第2和NH 3的有毒气体,我们同时证明了氧化或还原剂之间的明显化学相互作用与WS 2活性层之间的明显化学相互作用及其对传感器响应的影响。The experimental setup mimics standard electrical measurements on chemiresistors, exposing the sample to dry air and introducing the target gas analyte at different concentrations.该方法适用于NH 3浓度100、230和760和14 ppm的NO 2浓度,为未来的APXPS研究建立了基准,用于在操作系统条件下进行快速获取时间和快速获取时间和1:1的电反应和光谱数据之间的相关性。我们的发现有助于更深入地了解2D过渡金属二分法中的传感机制,为针对各种工业应用和具有低能消耗的无线平台优化化学传感器铺平了道路。关键字:操作光谱,带弯曲,表面电势,密度功能理论,气体传感
心脏电生理学研究越来越依赖于计算方法来连接实验和临床观察以了解基本机制。这些方法处理实验数据,例如光学映射和身体表面电势映射,以及模拟生物物理过程,例如心脏内电源的行为以及与这些相关的电势场。来自实验和临床记录的信号处理有助于阐明各个领域的电生理特性,而计算建模则提供了理论上的理解。患者特异性模型越来越有助于解释观察结果并改善了个体的心脏电气行为近似。因此,计算方法的进步对于获得对心脏电生理学和心律不齐的新见解至关重要。在这里,我们回顾了有关“心脏电生理学计算方法”生理学研究主题上发表的论文,并分享了这种技术的潜在未来影响的观点(图1)。
摘要:在计算中包括海面电流,可以通过负风能输入来潮湿的中尺度涡流,并且具有涡流寿命的潜在影响。在这里,我们研究了斜力斜体反气旋涡流,但要采用理想化的高分辨率高分辨率数值模型,遭受绝对(无海面电流)和相对(包括海面电流)的风应力。这项研究的结果表明,相对风应力耗散表面平均动能(MKE),并且还通过Ekman泵送整个水柱产生额外的垂直运动。风应力卷曲 - 诱导的Ekman泵送产生额外的巴罗诊所转化(平均平均动能电位),发现通过增加深MKE来抵消表面MKE的阻尼。对相对风应力的缩放分析 - 诱导的斜压转化和相对风应力阻尼确定这些数值的结果,表明额外的能量转换抵消了相对风应力阻尼。更重要的是,发现风应力卷曲 - 诱导的Ekman泵送可以改变表面电势涡度梯度,从而导致涡流的早期不稳定。因此,涡流不稳定性和最终的涡流衰变的开始是在模拟中以相对风应力的较短时间尺度进行的。
提出了统计热力学变异标准,用于研究金(AU)纳米颗粒可逆聚类中的热滞后。在实验上,采用了瞬时平衡映射分析来表征其热力学表征,在纳米溶剂和电化学水平(UV-VIS-NIR光谱,SLS/SAXS,ZETA电位)上进行进一步的测量。从理论上讲,它被成功地解释为热力学循环,促使纳米群体具有从热量和铺路到纳米聚集热发动机的有用工作的潜力。考虑到滞后压的病毒膨胀,为具有给定病毒系数的稀释系统推导了熵措施。这使我们能够发现相关颗粒电位参数的作用(即表面电势,纳米颗粒的大小,Debye的长度,Hamaker Energy)在滞后发作时的等温和等温变化中。当临时(DLVO)的成对电势控制纳米级的第二个病毒系数时,将开发在水盐溶液(NaCl)中的球形Au纳米颗粒(NaCl)。尤其是,变分标准可以预测加热和冷却路径之间的压降,这可能是在某些能量再分配的基础上(例如订购/重组电动双重
与经典的血脑屏障通道相比,抽象的鼻子到脑递送提出了一种有希望的替代途径,尤其是用于递送高分子量的药物。通常,大分子在生理环境中迅速降解。因此,可以使用纳米标志系统来保护生物分子免受过度降解。此外,由于特定的结合和较长的停留时间,靶向纳米颗粒表面上的配体能够改善生物利用度。在这项工作中,转铁蛋白装饰的壳聚糖纳米颗粒用于评估模型蛋白在体外通过鼻上皮屏障的通过。已证明,促进的叠氮化叠氮化物 - 烷基环加成反应可用于将功能组连接到转铁蛋白和壳聚糖,在壳聚糖纳米颗粒制备后,在轻度反应条件下,在轻度反应条件下可以快速共价表面缀合。通过SDS-PAGE和SPR测量确认了转铁蛋白及其结合效率的完整性。产生的转铁蛋白装饰纳米颗粒的大小约为110-150 nm,表面电势为正。纳米颗粒的表面结合配体的最高量也显示出最高的细胞摄取到人鼻上皮细胞系中(RPMI 2650)。在与胶质母细胞瘤细胞(U87)的空气 - 液体界面共培养模型中,转铁蛋白充分的纳米颗粒显示出更快的通过上皮细胞层的通过,并增加了细胞对胶质母细胞瘤细胞的摄取。这些发现证明了特定靶向配体的有益特征。使用这种化学和技术配方概念,在纳米颗粒形成后,可以将多种靶向配体连接到表面,同时保持货物完整性。
背景:Deguelin(DGL)是一种天然类黄酮,据报道在乳腺癌(BC)中表现出抗肿瘤作用。PEG-PCL(聚乙烯甘氨酸聚二苯乙酮),作为聚合物胶束具有生物降解性和生物相容性。这项研究的目的是研究纳米关节递送系统,PEG-PCL是否可以改善DGL抑制BC细胞增殖的生物利用度。方法:PEG-PCL聚合物首先是通过开环聚合物制备的,DGL和PACLITAXEL(PTX)负载的PEG- PCL纳米微粒是通过膜分散法制定的。通过核磁共振和傅立叶变换红外光谱(FTIR)光谱分析了PEG-PCL的组成和分子量。分别通过动态光散射,透射电子显微镜和溶血测定法评估了胶束的粒径,表面电位和溶血活性。然后用EDU染色,CCK-8,TUNEL染色和流式细胞仪测试了MDA-MB-231和MDA-MB-468细胞的增殖和凋亡。caspase 3表达也通过蛋白质印迹评估。结果:我们的结果首先表明PEG 2000 -PCL 2000已成功合成。DGL和PTX负载的PEG-PCL纳米微粒的形状为圆形,粒径为35.78±0.35 nm,表面电势为2.84±0.27 mV。胶束具有最小的溶血活性。此外,我们证明了DGL和PTX荷载PEG-PCL纳米细胞可以抑制BC细胞中的增殖并诱导凋亡。这为开发新的治疗策略提供了潜力。这项研究中构建的DGL和PTX负载的PEG-PCL纳米微粒具有显着的抑制作用,对BC细胞中的凋亡作用显着,并且在凋亡中具有显着的促销作用。结论:这项研究提出,PEG-PCL形成的纳米丝可以增强紫杉醇针对乳腺癌细胞的细胞毒性,同时,Deguelin的负载可能会进一步抑制细胞增殖。
视频:液体喷射光电光谱(LJ-PES)在对液体水,水溶液和挥发性液体的电子结构的实验研究中取得了突破。这种技术的新颖性可以追溯到25年以上,其中在于在真空环境中稳定连续的微米直径LJ,以实现PES研究。PES中的关键数量是与电子垂直促进到真空中的最可能的能量:垂直电离能量,vie,for中性和阳离子,或垂直脱离能量VDE,用于阴离子。这些数量可用于鉴定物种,其化学状态和粘结环境及其在溶液中的结构特性。准确测量VIE和VDE的能力至关重要。相关的主要挑战是针对明确定义的能源参考的确定这些数量。仅采用最近开发的方法是通常的测量,通常对液体可行。实际上,这些方法涉及将凝结的概念应用于从液体样品中获取光电子(PE)光谱中,而不是仅依赖自第一个LJ-PES实验以来通常实施的分子 - 物理处理。这包括在自由电子检测之前明确考虑电子遍及液体表面的遍历。与精确的电离光子能量一起,此功能可以直接确定VIE或VDE,相对于液相真空水平,从任何感兴趣的PE特征中都可以直接确定。我们相对于液态真空水平的测量VIE和VDE的方法特别涉及检测样品中发出的最低能量电子,这些电子的能量勉强能够克服表面电势并积聚在液态光谱的低能尾巴中。通过将足够的偏置电位应用于液体样品,通常可以暴露出这种低能的光谱尾部,其尖锐,低的能量截止均显示出在测得的光谱中揭示真正的动力学零,而与实验中的任何扰动固有或外部电位无关。此外,通过还确定凝结物质中常见平衡能级的溶液 - 相VIE和VDE,费米水平可以量化固态PES溶液溶液工作功能,Eφ和液体可效应表面偶极效应中普遍实现的参考能。使用LJS,只能通过控制不良的表面充电和所有其他外部电势来正确访问费米水平,从而导致所有PE特征的能量移动,并排除准确的电子能量访问。更具体地说,必须设计条件以最大程度地减少所有不良电位,同时保持样品和设备之间的平衡,内在的(接触)的电位差。建立这些液相准确的能量引用方案,重要的是,可以从近偏差溶液中确定VIE和VDE,以及批量电子结构和界面效应之间的定量区别。■密钥参考我们将在此处审查和示例这些方案,并在此处审查这些方案,并在此处进行几种示例性水溶液,重点关注最低的离子化或最低能源 - 能源PE峰,这与水相种类的氧化稳定性有关。
