图3。接触过程中不同材料之间电子结构的简化示意图; a)两种金属,从较低的能量金属可以容纳来自较高能量金属的电子; b)金属和绝缘子,那里没有一个可以使电子的自由状态满足,因此只有通过隧穿才能将电子转移到绝缘体(或通过热激发过程); c)在金属和缺陷的绝缘子之间,原子缺陷使可用的电子状态发生电子传输。d&e)显示d)陶瓷的原理图;和e)聚合物键合网络;左)原始晶格;右)由于在陶瓷网络中引起的缺陷,该晶格通过多原子协调的键合网络维持,而在聚合物中,一维键网网络被损坏,可能导致传质。
本指南介绍了在绝缘样品的 XPS 分析过程中控制表面电荷的方法以及提取有用结合能信息的方法。本指南总结了表面电荷的成因、如何识别表面电荷的发生、最小化电荷累积的方法以及在使用电荷控制系统时调整或校正 XPS 光电子结合能的方法。在 XPS 测量过程中,有多种方法可以控制表面电荷累积,并介绍了先进 XPS 仪器上的系统示例。没有单一、简单且万无一失的方法来提取绝缘材料的结合能,但介绍了几种方法的优点和局限性。由于方法各异且每种方法都有局限性,研究人员必须准确描述研究报告和出版物中应用的程序。
细胞因子是小的信号蛋白,可调节对感染和组织损伤的免疫反应。细胞因子的表面电荷决定了它们在免疫调节中的体内命运,例如半衰期和分布。炎症和感染期间细胞外微环境和酸中毒的总体负电荷可能会通过控制组织居住特性来差异地影响具有不同表面电荷的细胞因子,以进行微调的免疫调节。但是,在文献中尚未阐明细胞因子表面电荷的趋势和作用。有趣的是,我们已经观察到大多数促炎性细胞因子的负电荷,而大多数抗炎细胞因子和趋化因子和趋化因子都有阳性电荷。在这篇综述中,我们广泛研究了所有细胞因子和趋化因子的表面电荷,总结了主要细胞因子的药代动力学和组织粘附,并分析了表面电荷与细胞因子生物分布,激活,激活,功能以及免疫调节中的功能。此外,我们确定了促疾病和抗炎细胞因子之间电荷差异的一般趋势是开发精确免疫调节方法的独特机会,可以应用于许多与炎症相关疾病,包括实心肿瘤,慢性伤口,感染和sepsis。
内在化(31,32)。生物大分子,例如蛋白质和核酸,具有较大的大小,可阻碍有效的细胞摄取。纳米颗粒,甚至比生物大分子大的纳米颗粒,也可以通过内吞途径进行内化(33)。此外,可以通过表面功能化来设计纳米颗粒,以满足基因递送(包括细胞摄取)的关键要求。例如,纳米颗粒的内吞作用可以通过靶向鳞茎形的膜内知来增强纳米颗粒。Shuvaev及其同事开发了纳米颗粒,具有口腔特定的抗体,用于通过小窝途径递送的有效递送(34,35)。可以通过增强的渗透性和保留率(EPR)(36 - 38)来实现目标区域中纳米颗粒的浓度增加。仅通过纳米颗粒的巨大大小,它们倾向于在肿瘤组织中积聚,这是由于通过病理血管生成形成的漏水血管。纳米颗粒的表面电荷是一个重要的生物物理参数,通常在纳米颗粒和靶向细胞之间逆转纳米 - 生物接口的静电吸引力。在癌症诊断和治疗学中,表面电荷驱动的靶向被证明对有效在癌症诊断和治疗学中,表面电荷驱动的靶向被证明对
DOX的潜力。 以前在癌症治疗中报道了加拉汀和化学治疗剂的协同作用(Ren等,2016; Yu等,2018)。 然而,低生物利用度和类黄酮的第一通代谢减轻了GA的抗癌作用(Wu等,2011; Zhu等,2018)。 基于我们的结果,NLC-RGD是将GA递送到人类肺泡基底上皮细胞中的合适载体。 纳米颗粒的大小范围为30-200 nm,适合药物输送(Hajipour等,2021)。 网状内皮系统很容易省略大于30 nm的纳米颗粒,而小于20 nm的纳米颗粒通过肾脏排泄去除(Hajipour等,2018)。 zeta电位作为纳米颗粒表面电荷的指标,可以控制纳米颗粒和之间的排斥力DOX的潜力。以前在癌症治疗中报道了加拉汀和化学治疗剂的协同作用(Ren等,2016; Yu等,2018)。然而,低生物利用度和类黄酮的第一通代谢减轻了GA的抗癌作用(Wu等,2011; Zhu等,2018)。基于我们的结果,NLC-RGD是将GA递送到人类肺泡基底上皮细胞中的合适载体。纳米颗粒的大小范围为30-200 nm,适合药物输送(Hajipour等,2021)。纳米颗粒,而小于20 nm的纳米颗粒通过肾脏排泄去除(Hajipour等,2018)。zeta电位作为纳米颗粒表面电荷的指标,可以控制纳米颗粒和
本研究旨在制备西妥昔单抗 (CTX) 修饰的卡巴他赛 (CBZ) 负载氧化还原敏感的 D-α-生育酚-聚乙二醇-1000-琥珀酸酯 (TPGS-SS) 纳米颗粒 (NPs),用于表皮生长因子受体 (EGFR) 靶向肺癌治疗。使用透析袋扩散法制备 NPs,以产生非氧化还原敏感非靶向 (TPGS-CBZ-NPs)、氧化还原敏感非靶向 (TPGS-SS-CBZ-NPs) 和靶向氧化还原敏感 NPs (CTX-TPGS-SS-CBZ-NPs)。对开发的 NPs 的粒径、多分散性、表面电荷、表面形态和包封效率进行了表征。此外,还进行了其他体外研究,包括体外药物释放、细胞毒性和细胞摄取研究。发现颗粒尺寸和表面电荷分别在 145.6 至 308.06 nm 和 − 15 至 - 23 mV 范围内。CBZ 临床注射剂 (Jevtana ® )、TPGS-CBZ-NPs、TPGS-SS-CBZ-NPs 和 CTX- TPGS-SS-NPs 的 IC 50 值分别为 17.54 ± 3.58、12.8 ± 2.45、9.28 ± 1.13 和 4.013 ± 1.05 µ g/ml,表明与 CBZ 临床注射剂相比,细胞毒性分别增强了 1.37、1.89 和 4.37 倍,表明细胞毒性显著增强。此外,体外细胞摄取调查显示,与纯 CMN6、TPGS-CMN6-NPs 和 TPGS-SS-CMN6-NPs 相比,CTX-TPGS-SS-CMN6-NPs 在 A549 细胞中积累显著。此外,通过超声/光声和 IVIS 成像分析了开发的 NPs 的靶向效率。
技术,3,4和神经形态离子化。5 - 7在这些应用中,石墨烯通常在透明的底物上支持,例如钙uoride(CAF 2)和二氧化硅(SIO 2)。8 - 10个在电位控制条件下底物支撑的晶状电极/水电电解质界面的分子细节至关重要,并且是理解这些系统机制的必不可少的先决条件,特别是在电极跨电极和电气双层(EDL)的机械机制(尤其是局部电气)。局部电气eLD显着影响界面的物理化学特性。例如,局部电动ELD可以修改电极 - 电解质相互作用,以改变反应动力学和电子传输11 - 17,并与电极/水溶液界面处的电荷存储密切相关。18,19因此,在石墨烯电极/水性电解质界面处的局部电子的知识对于其在电化学系统中的合理应用至关重要。越来越多的研究表明,石墨烯片不能将底物的表面电荷免受水解的水解状态,称为“润湿透明度”。20 - 22因此,底物的表面电荷极大地有助于局部电动ELD,并强烈影响EDL中的水和电解质离子的组织。10,20,23我们最近表明,由石墨烯电极上施加的电势引起的水解离会改变CAF 2支持的石墨烯电极附近的局部pH。自然排除了来自批量的信号。10通过单层石墨烯电极24 - 27在CAF 2表面诱导化学反应,从而改变了CAF 2底物的表面电荷。10,20,23这里出现的一个问题是这种化学反应引起的表面电荷变化是否是底物支持的石墨烯电极的普遍观察。在这里,我们使用界面水信号(C(C(2)),使用异差探测的总频率产生(HD-SFG)光谱探测SIO 2支持的透明烯电极/水晶电解质界面的充电。HD-SFG光谱是一种表面特定的技术,可选择性地探测界面上分子的分子振动。28,29重要的是,界面水的复合物C(2)信号不仅提供了界面结构和界面水的方向的见解,30,31,还提供了界面处的电荷。32,33,我们能够在电位控制的条件下直接探测界面的充电。除了HD-SFG测量值外,我们还使用拉曼光谱法独立地表征了石墨烯电极的电荷。将拉曼与HD-SFG结合在一起,使我们能够完全绘制SIO 2支持的石墨烯电极/水性电解质界面的电荷,并区分与石墨烯电极及其支持的底物对局部电气电气的支撑底物的不同贡献。此外,通过比较在SIO 2和CAF 2-支持的石墨烯电极表面上收集的数据,我们揭示了不同的底物对石墨烯和底物充电时的影响。Our approach allows us to obtain molecular details of the graphene electrode/aqueous electrolyte interface, including the reorganiza- tion of interfacial water molecules and charges of the interface, which are relevant for various technological applications of graphene such as water desalination, chemosensing, biosensing, energy storage and conversion, and neuromorphic iontronics.
生物炭对土壤质量的主要好处是通过增加可以保留养分并增加水位容量的活性表面积。我们需要更好地了解这些变量,然后才能广泛推荐对土壤的生物炭应用。例如,新鲜生产的生物牙齿是疏水性的,表面电荷较低,但是随着土地施加后的时间,生物炭的表面可以被氧化,从而更具反应性。因此,多年来可能无法实现将生物炭应用于土壤的全部好处。正在进行许多关于生物炭生产技术的研究以及生物产生的生物如何影响土壤特性和促成性。希望,我们将在不久的将来就生物炭申请提出建议。