构图。8 the rest nano thano liidic效应从以下意识到,在纳米级,可能不会忽略墙壁的表面电荷9,从而导致离子耦合 - uid传输现象,例如电渗透和流动液。10然而,近年来已经积累了证据表明,表面电荷不是纳米效应固体 - 液体界面的足够的描述符。从传导表面11,12的UID到由于介电对比而引起的强烈相互作用的离子,13-15几项研究表明需要在其电子性质水平上描述固体壁。确实可以预期,靠近实心壁的足够靠近,液体中带电颗粒产生的库仑电位会被壁物质的介电响应筛选:这种效应已称为“相互作用相互作用”。液体中的15个带电的颗粒是第一个和最重要的,离子:与体积库仑相互作用相比,与量子相比,相互作用的纳米渠中离子之间的相互作用相互作用会产生有效的库仑相互作用,从而导致了相关性的丰富效果。13,14但是,即使电中性的AeR时间平衡,也具有分子级电荷结构:水因此:水因此在Terahertz频率和宽范围的长度尺度上表现出热电荷(称为“ Hydrons” 17)。相应的库仑埃尔斯也会受到相互作用的影响:它们通过实心壁中电子的热和量子iCtation进行动态筛选。17,2218,19这种固体 - 液体耦合已显示出对流体动力摩擦的“量子”贡献,并在液体和固体电子之间的直接接近eLD能量转移中产生了“量子”贡献。19 - 21这些效果弥合了UID动力学和凝结物理物理学之间的差距,开为工程纳米级的开辟了道路,并使用Conth ning Walls的Electronic属性开辟了道路。
生物分子是由生物细胞产生的,如代谢物、蛋白质、碳水化合物、脂质、核酸和碳水化合物,它们具有多种生物相容性用途 [1]。生物分子有各种大小和排列。通过跟踪和识别这些生物分子,可以获得血液学、药理学、疾病诊断和治疗可行性的基本信息。由于生物分子的性质不同(例如,测量、表面电荷、便携性等),已经开发出许多定位技术,例如表面增强拉曼光谱 (SERS)、表面等离子体共振 (SPR) 和气相色谱-质谱 (GC-MS)。表面增强拉曼散射 (SERS) 需要复杂的光学设置和仪器。SERS 通过激活表面等离子体共振来改善拉曼扩散,从而提供目标生物分子的精确定位(通常在 nM 级)
CP和电荷存储模型。a,通过数值求解Poisson – Nernst – Planck和Navier -Stokes方程获得的纳米纤维内部离子的平均浓度和–200 mV。在模拟中使用的大量离子浓度为10 mM,离子特性为K +和Cl - 。孔的表面电荷为-10 mc M –2。b,CP因子是数值模拟预测的离子浓度的函数。c,d,传统电容器的示意图,其中电荷在空间中分开,并且在换压时可以放电。e,f,一个离子负电容器的示意图,其中电荷被共定位,但仍可以随电压变化而放电。Q与V曲线的负斜率是负电容的特征。信用:自然纳米技术(2025)。doi:10.1038/s41565-024-01829-5
革兰氏阳性细菌的主要区别特征在于其细胞壁结构。细胞壁主要由厚厚的肽聚糖层组成,肽聚糖是由糖和氨基酸制成的网状分子。该层为细菌细胞提供了结构支持和保护。受到革兰氏染色技术时,革兰氏阳性细菌保留了晶体紫染料,从而在显微镜下导致其特征性的紫色。此外,革兰氏阳性细菌的细胞壁含有teichoic酸,它们在离子和营养转运中起作用,并在感染过程中调节与宿主细胞的相互作用。在某些情况下,脂肪甲酸固定在细胞膜上,延伸到肽聚糖层,并为细菌的整体表面电荷做出了贡献[1]。
我们将重点介绍 KPFM 的基本原理及其在无机纳米结构和纳米材料中的应用,例如碳纳米管 (CNT)、石墨烯、纳米晶体、Si 基纳米器件等。我们将回顾用于电测量的开尔文探针法的物理背景,然后重点介绍两种 KPFM 方法:一种称为幅度调制 KPFM (AM-KPFM),另一种称为频率调制 KPFM (FM-KPFM)。我们还将讨论一种特殊的方法,无反馈 KPFM,用于检测高电压。然后,我们将分析如何通过仪器实现上述 KPFM 方法以及影响 KPFM 分辨率、准确度、灵敏度和重复性的因素。最后,我们将讨论 KPFM 在无机纳米结构和纳米材料表征中的应用。我们将主要关注五个 KPFM 应用:表面电荷检测、功函数和掺杂水平研究、电荷转移研究、场效应晶体管和原子分辨率 KPFM。
与其他几种NP变体不同,IO NP可以借助EMF引导到肿瘤部位,而无需固定靶向剂,例如肽,适体,蛋白质或抗体。但是,类似于其他NP类型,至关重要的是要覆盖IO NP的裸露表面(例如,使用聚合物或细胞膜)来防止调子化和聚集,并逃避巨噬细胞的吸收,以便它们可以到达肿瘤部位(图1A)[2]。使用IO NPS采用MDT有两种策略:直接与IO NP的药物共轭或与IO NP共同负载的DDS的药物共轭。使用IO NP,其他参数,例如血流速率,NPS的表面电荷或其尺寸也可能对NP的最终积累产生显着影响,而磁场强度在MDT中起关键作用。磁场梯度可能导致IO NP向最强磁力(F)的区域移动,如公式(4)[3]:
摘要:接触电气(CE)或接触和分离后的表面电荷的发展,是一个千年历史的科学谜团,是该行业许多问题的根源。自18世纪以来,了解CE的效果涉及根据其充电倾向对材料进行排名。在所有这些报告中,绝缘子伍德对CE的影响令人惊讶。在这里,我们表明,木材的这种独特的抗抗性性质归因于其木质素含量,即从木材中去除木质素,使抗固定特性不再存在,并且(重新)加法将其带回去。提议木质素的抗抗性作用(也是绝缘子)与其根本的清除作用有关,并且可以通过CE的键键机制来解释。我们的结果还表明,木质素是一种可持续的,低成本的生物聚合物,可以用作弹性体和热塑料的一些代表性实例,以表明其抗抗性作用的普遍性质。
在本研究中,我们正在开发优化的、自组装的、ROS 敏感和 ROS 清除纳米粒子 (NP),作为慢性炎症疾病的潜在治疗途径。RAFT 聚合方法能够合成硼酸聚合物,这是系统 ROS 敏感性的基础,依赖于这些聚合物和多酚儿茶酚基团之间的硼酸酯键。我们的 NP 是使用纳米沉淀和微流体方法合成的,并通过尺寸和表面电荷进行表征。进行了 TEM 成像和紫外可见光和荧光光谱研究,以确认 NP 络合和 ROS 敏感性。ROS-Glo H 2 O 2 和 DCFDA 测定将确认巨噬细胞和小胶质细胞中的 ROS 清除。流式细胞术将确认我们的 NP 进入细胞,显微镜将能够观察其线粒体定位。将进行 ELISA 来监测促炎细胞因子,确保我们的 ROS 清除转化为减少炎症。
与其他几种 NP 变体不同,IO NP 可以借助 EMF 引导至肿瘤部位,而无需在表面固定肽、适体、蛋白质或抗体等靶向剂。然而,与其他类型的 NP 类似,必须在 IO NP 的裸露表面涂上涂层(例如,用聚合物或细胞膜)以防止调理作用和聚集,并避免被巨噬细胞摄取,这样它们才能到达肿瘤部位(图 1A)[2]。使用 IO NP 进行 MDT 有两种策略:将药物直接结合到 IO NP 上,或将药物结合到与 IO NP 共同负载的 DDS 上。虽然磁场强度在使用 IO NP 的 MDT 中起着关键作用,但其他参数(如血流速率、NP 的表面电荷或它们的大小)也会对 NP 的最终积累产生重大影响。磁场梯度可导致IO NPs向磁力最强的区域(F)移动,如方程(4)所示[3]:
这是记录由Ceratonia Siliqua水提取物制备的硒纳米颗粒(Nanose)抗菌活性的研究,鉴于纳米糖在药用应用中的效力很大。使用多种常规方法(包括粉末X射线衍射(PXRD),傅立叶变换红外光谱(FTIR),现场发射扫描电子显微镜(FESEM),能量分散性X射线光谱(Edax),DLS,dls和Z-Potienth和Z-Potection,采用了多种常规方法的表征。 PXRD分析证明了纳米与参考号00-001-0853的兼容性。 FTIR光谱还证实了提取物中残留的有机成分存在。 FESEM图像揭示了这些颗粒被包裹在C. silliqua的有机材料中。 颗粒显示出球形形态。 生物合成纳米的平均流体动力粒径约为199 nm(按强度分散尺寸)。 颗粒显示的平均表面电荷为-21.88 mV。 纳米糖在抑制生长致病细菌方面至关重要。 该项目的结果突出了生物合成纳米糖的有效抗菌特性,强调了金属纳米颗粒(例如硒)在未来的抗菌应用中的有用应用。采用了多种常规方法的表征。PXRD分析证明了纳米与参考号00-001-0853的兼容性。FTIR光谱还证实了提取物中残留的有机成分存在。FESEM图像揭示了这些颗粒被包裹在C. silliqua的有机材料中。颗粒显示出球形形态。生物合成纳米的平均流体动力粒径约为199 nm(按强度分散尺寸)。颗粒显示的平均表面电荷为-21.88 mV。纳米糖在抑制生长致病细菌方面至关重要。该项目的结果突出了生物合成纳米糖的有效抗菌特性,强调了金属纳米颗粒(例如硒)在未来的抗菌应用中的有用应用。