电磁场(3-0-0) 先决条件:1. 数学-I 2. 数学-II 课程成果 课程结束时,学生将展示以下能力:1. 理解电磁学的基本定律。2. 在静态条件下获得简单配置的电场和磁场。3. 分析时变电场和磁场。4. 理解不同形式和不同介质中的麦克斯韦方程。5. 了解电磁波的传播。模块 1:(08 小时)坐标系与变换:笛卡尔坐标、圆柱坐标、球坐标。矢量微积分:微分长度、面积和体积、线、表面和体积积分、Del 算子、标量的梯度、矢量散度与散度定理、矢量旋度与斯托克斯定理、标量的拉普拉斯算子。模块 2:(10 小时)静电场:库仑定律、电场强度、点电荷、线电荷、表面电荷和体积电荷产生的电场、电通量密度、高斯定律 - 麦克斯韦方程、高斯定律的应用、电势、E 和 V 之间的关系 - 麦克斯韦方程和电偶极子与通量线、静电场中的能量密度、电流和电流密度、点形式的欧姆定律、电流的连续性、边界条件。静电边界值问题:泊松和拉普拉斯方程、唯一性定理、求解泊松和拉普拉斯方程的一般程序、电容。模块 3:(06 小时)磁静场:磁场强度、毕奥-萨伐尔定律、安培电路定律-麦克斯韦方程、安培定律的应用、磁通密度-麦克斯韦方程。麦克斯韦静场方程、磁标量和矢量势。磁边界条件。模块 4:(10 小时)电磁场和波传播:法拉第定律、变压器和运动电磁力、位移电流、最终形式的麦克斯韦方程、时谐场。电磁波传播:有损电介质中的波传播、无损电介质中的平面波、自由空间、良导体功率和坡印廷矢量。教科书:
这项工作涉及过滤媒体上的微生物增长,并着重于微生物群落扩散到过滤器培养基上的能力。研究了两种微生物类型:来自废水处理厂(SM)活性污泥的微生物(SM)和甲苯特定联盟(TSC)。该研究所考虑的过滤器培养基包含活性碳纤维(ACF),挥发性有机化合物(VOC),颗粒治疗目的,活化的碳纤维感觉(ACFF)以及活化的碳和纤维素纤维感觉(AC 2 F 2)。使用静态生长程序在100%的相对湿度下使用静态生长程序,将人工污染的过滤器提交给微生物定植。根据过滤器蛋白质含量测定法,已经使用实验室中开发的方法评估了每克过滤器的微生物的最终浓度。测量插入和过滤器的平均表面电荷以评估微生物对污染的影响。烟灰颗粒对TSC增殖的影响,然后研究AC 2 F 2滤波器。zeta测量能够评估微生物在过滤纤维上粘附的烟灰的刺激。微生物污染对过滤器通透性和下游颗粒的后果已在填充装置中评估。结果表明,AC 2 F 2与微生物定殖的更好分析。但是,SM在ACFF上比TSC有更多的困难,而SM与TSC相比,SM定居更容易AC 2 F 2。电荷表面测定已定义了TSC和AC 2 F 2的最佳静电兼容性,而SM和ACFF的最小静电兼容性。当在引入AC 2 F 2之前将烟灰添加到TSC上时,观察到高污染形状,而仅发生烟灰的情况下只有一小段污染形状。Zeta电位措施显示出有利的电荷条件,可在AC 2 F 2纤维上粘附于烟灰颗粒上的TSC。因此,烟灰可能已经在微生物广告中扮演了界面角色。这意味着颗粒之间的静电兼容性是评估微生物粘附到过滤器上的良好方法,但无法解释微生物增殖的整个机制。其他参数,例如营养
• 滞后:AIR 403 调节控制电路现在包含滞后。一旦电池充满电,这将使涡轮机锁定在静音调节模式。当涡轮机感应到电池电压略低于满电电压时,它会再次开始发电。这意味着,对于工厂设置的 12V 涡轮机,当电池电压达到 14.1V 时,涡轮机将进行调节(关闭),当电压降至略低于满电电压的 12.6V 时,涡轮机将恢复充电。由于高于 12.6V 的非充电电池电压主要代表“表面电荷”,能量非常少,因此浪费了最少的输出。此功能可防止涡轮机在调节模式内外波动,从而使机器更安静、性能更好。• 新型电子设备:AIR 403 包含一个专用电源整流器,可将多余的热量直接散发到机身上。调节电子设备已得到增强,可在最极端的操作条件下实现更强大的控制和可靠性。 • 新型交流发电机:新型 AIR 403 内置了更强大的交流发电机。旋转叶片轴时可以感觉到更强大的永磁转子;用手指旋转轴时可以感觉到轻微的“卡滞”。这是正常现象,叶片开始旋转后很快就会消失。 • 新型叶片:转子叶片经过重新设计,采用新型高效真翼型。全新精密注塑模具生产出的叶片一致性极佳,性能更安静,振动最小。在强风中,增强的超速模式(“颤振”)会降低功率输出和机器转速,从而延长使用寿命、降低噪音,甚至在最恶劣的风中具有更高的生存能力。 • 新型机身、新型轮毂:AIR 403 机身采用精密铸造工艺制成,不仅提高了配合度和光洁度,而且机身更坚固耐用。压铸铝轮毂设计是我们生产过的最坚固、最坚固的轮毂。
背景:肝细胞癌(HCC)是癌症相关死亡的主要原因之一。Sorafenib是该疾病的一线疗法,与降低的治疗功效有关,可以通过与selumetinib结合来克服这种疗效。在这种情况下,这项工作的主要目标是开发一个新的纳米系统,该系统由含有靶向配体GalNAC的脂质双层涂层的聚合物核心组成,以专门有效地将两种药物分配到HCC细胞中,以显着提高其治疗效率。方法:混合纳米系统(HNP)的物理化学表征及其成分是通过动态光散射,ZETA电位,基质辅助激光解吸电离的电离 - 飞行质量光谱的时间 - 飞行质量光谱的时间和透射电子微观。细胞结合,摄取和HNP的特异性通过流式细胞和共聚焦显微镜评估。通过Alamar Blue Assay评估了治疗活性:通过:细胞活力;使用FITC-ANNEXIN V通过流式细胞术进行细胞死亡;胱天蛋白酶活性通过发光;通过流式细胞仪的线粒体膜电位;通过蛋白质印迹和分子靶水平。结果:获得的数据表明,这些混合纳米系统具有两种药物的较高稳定性和载荷能力,以及合适的理化特性,即在大小和表面电荷方面。此外,生成的制剂允许绕过耐药性并具有高特异性,从而促进了HCC细胞中的大细胞死亡水平,但不能在非肿瘤细胞中。通过增加的编程细胞死亡来实现共同载体药物的抗肿瘤作用的增强,这与线粒体膜电位的强烈降低相关,caspase 3/7和caspase 9的活性显着增加,并大量增加附属蛋白V-v-p-p-p-p-p-py-py-py-PORSISTIS的细胞。结论:开发的配方产生了较高且协同的抗肿瘤作用,揭示了改善针对HCC治疗方法的转化潜力。关键字:肝细胞癌,混合纳米系统,药物输送,Galnac,Sorafenib,Selumetinib
摘要:一种主要的瓶颈降低了各种药物的治疗功效,是只有一小部分给药剂量到达作用部位。增加目标组织中药物量的一种有希望的方法是通过用细胞表面受体配体修饰的纳米颗粒(NP)递送,以选择性地鉴定靶细胞。但是,由于受体结合可以无意间触发细胞内信号传导级联,因此我们的目标是开发一种独立于受体的NP摄取方式。细胞穿透肽(CPP)是一种有吸引力的工具,因为它们允许有效的细胞膜交叉。到目前为止,由于其促进能力是非特异性的,因此它们的适用性受到严重限制。因此,我们旨在将有条件的CPP介导的NP内在化仅在目标细胞中。我们合成了不同的CPP候选物,并研究了它们对核心 - 壳 - 壳纳米颗粒系统中的影响,ζ电位和吸收特征,该系统由聚(乳酸糖 - 糖果)(PLGA)(PLGA)(PLGA)和聚(乳酸)和甲基乙二醇(乙烯乙二醇)(PLA)(PLA 10 K PEG)(PLA 10K)组成的壳纳米颗粒系统(PLA)(PLA)(PLA 10K)钉部分。我们将TAT47-57(TAT)确定为最有前途的候选人,随后将TAT修饰的PLA 10K 10K PEG 2K 2K聚合物与更长的PLA 10K PEG 5K 5K聚合物链结合在一起,用有效的血管紧张素转换酶2(ACE2)Infimitor-2(ACE2)Infimitor Mln-47660进行了修饰。MLN-4760启用选择性目标细胞识别时,额外的PEG长度在第一个非特异性细胞接触期间隐藏了CPP。仅在MLN-4760与ACE2的先前选择性结合后,已建立的空间接近度暴露了CPP,从而触发了细胞的摄取。与未修饰的颗粒相比,我们发现ACE2阳性细胞的摄取量有18倍。总而言之,我们的工作为有条件的纳米颗粒摄取为有条件的,高度选择性受体依赖性的纳米颗粒摄取铺平了道路,这在避免副作用方面是有益的。关键字:纳米颗粒靶向,聚合物纳米颗粒,多精氨酸,TAT,纳米粒子表面电荷,聚阳离子,电荷介导的摄取,顺序摄取
大面积柔性双原子亚纳米薄镧系氧化物纳米卷的常规合成 吴苗苗 1、吴彤 2、孙明子 2、陆璐 2、李娜 1、张超 1、黄博龙 2 *、杜亚平 1 * 和闫春华 1,3,4 1 南开大学材料科学与工程学院、国家先进材料研究院、先进能源材料化学重点实验室、稀土与无机功能材料研究中心,天津 300350 中国。 2 香港理工大学应用生物及化学科技系,香港九龙红磡,999077 中国。 3 北京分子科学国家实验室,稀土材料化学及应用国家重点实验室,北大-港大稀土材料与生物无机化学联合实验室,北京大学化学与分子工程学院,北京 100871,中国。 4 兰州大学化工学院,兰州 730000,中国 电子邮件:bhuang@polyu.edu.hk(BH);ypdu@nankai.edu.cn(YD) 摘要 在许多超薄纳米材料的合成中都发现了表面波纹或滚动现象。然而,精确合成和控制这种细微纳米结构仍然极具挑战性,表明其在未来纳米能源系统中具有尚未开发的潜力。在本文中,建立了一种简单但稳定的胶体化学方法来合成超薄镧系氧化物纳米卷,首次实现了具有卷曲边缘的原子级厚度。详细的机理研究证实,纳米卷的滚动行为是由表面活性剂 3-溴丙基三甲基溴化铵中溴烷基团的吸附引起的表面电荷扰动引起的。更重要的是,实验证明了亚纳米薄镧系元素纳米卷的可逆和可控滚动。作为实际应用的证明,超薄镧系元素氧化物纳米卷/碳纳米管薄膜已被用于锂硫电池作为夹层,表现出优异的电化学性能。我们的方法广泛应用于高产率生产新型无机超薄纳米结构,在能源系统中有着巨大的应用前景。关键词:稀土,镧系元素氧化物,超薄纳米结构,密度泛函理论,锂硫电池
简介使用常规方法的陶瓷加工技术应用于最先进的陶瓷,称为智能陶瓷或智能陶瓷或电陶瓷。[1,2]考虑到所得产品的经济方面和相称的好处,本研究中排除了溶胶 - 凝胶和湿化学加工途径。在本研究中还排除了使用陶瓷成分在制造使用真空涂料单元的涂料或设备中。基于目前的信息,预计与化学途径处理相比,常规处理方法可以提供相同的性能陶瓷。当烧结温度,加热和冷却坡道,峰值温度(烧结温度),浸泡时间(保持时间)等时,这是可能的。被认为是可变参数。此外,烧结操作之前的可选钙化步骤仍然是重要的变量参数。这些变量参数构成烧结的曲线,以获得烧结的产品。也可以与烧结曲线的变量结合使用,以获得归因于钙化步骤的多个烧结曲线的相同产品。总体而言,对潜在的热和电绝缘涂层,微电子和集成电路,离散和集成设备等进行了最先进的陶瓷技术。在太空计划中的应用程序。陶瓷系统是随机定向的单个/多相多晶半导体。聚集的粉末不能有效地填充空间。这些系统基于氧化物或非氧化物或两者组成的某种杂化复合材料。轻巧的陶瓷材料不断搜索各种空间应用,作为传感器,微电器设备和电路,绝缘子,涂料,辐射屏蔽,能量转换,机械和结构支持等。利用传统的陶瓷加工方法,然后强调与钙化步骤结合烧结,以更好地执行陶瓷体。可以看到传统的陶瓷加工方法是制造积极稳定设备,防止涂料,不降解的绝缘子和结构等的经济途径。因此,智能陶瓷意味着在严重或敌对的应用领域成功使用的有效陶瓷物体而不会失败或寿命增加。陶瓷的加工/制造陶瓷加工技术涉及使用高温窑进行常规烧结的浆液和喷雾干燥的颗粒准备。本研究中未包括微波烧结和激光烧结。浆料制剂取决于原料,因为颗粒的表面电荷起着构成Zeta电位的重要作用。ZETA电位是由每个粒子从悬空键中造成的集量表面电荷产生的。电荷密度的性质决定了浆料的p h,因此与Zeta电位有关。通常,高ZETA电位表示分散良好的浆液,而低Zeta电位表示弱或强烈倾斜的浆液。此外,颗粒的聚集也是范德华表面力引起的严重问题。絮凝和聚集会导致最终产物的微观结构中的空隙。
细胞导致相关分子丧失,并最终导致细胞裂解或死亡。具有内腔直径在顺式入口的2.9 nm之间,内部腔内为4.1 nm,内部收缩处为1.3 nm,在β-贝尔的反式入口处有2 nm,[27]αHL是第一个使用DNA和RNA Polimers的电流转移的纳米孔[27]αHl是第一个纳米孔和RNA Polimers的电流变化。其他用于感应的蛋白质孔包括smegmatis porin A(MSPA)[29]和细菌外膜通道CSGG [26,30],后者用于牛津纳米孔技术的商业设备中,用于纳米孔基于基于纳米孔的DNA和RNA序列。Sensing has also been explored with the PA 63 channel of anthrax toxin, [31] the potassium channel KscA, [32] the toxin aerolysin, [7,33] the mechanosensitive channel MscL, [34] the bacterial transporter FhuA, [9,35] the bacterial toxin ClyA, [36] and the bacteriophage phi29 DNA packaging motor.[37]生物纳米孔对商业产物是有利的,因为生物蛋白表达能够以精确且一致的几何形状对纳米孔进行大规模制造。一致的几何形状是必不可少的,当纳米孔被用作单分子传感器,其中读出密切取决于纳米孔的结构。适应许多传感应用的纳米孔需要在天然存在的蛋白质纳米孔中较少丰富的结构特征。蛋白质纳米孔已被广泛突变[38],以获取特定的感测,例如尺寸选择性或特定的分子相互作用。例如,报告了一个基于MSPA的纳米孔传感平台[39],其中将理性设计的聚合物链束缚在MSPA孔中。这使得对广泛的分析物,化学反应监测以及对映异构体的歧视启用了单分子检测。[40]可以通过更换,[41]删除,[42,43]或添加氨基酸[44]来引入蛋白质孔的修饰,从而更改表面电荷,[45] functional oft oft off inctional [46]和疏水性[47]和孔的疏水性[47],如Soskine等人所示。clya孔。[48]这些特异性突变会因pH [49]或盐浓度的变化而改变孔的稳定性。[50]然而,引入了几种化学修饰,使可预测结构的毛孔的制造变得困难。小尺寸的肽孔可以通过简单地包含在L-氨基酸的常规寄存之外的氨基酸残基来更高的设计多功能性。[51,52]肽还促进了非蛋白质生成氨基酸的高度可调设计器毛孔的完整设计。[53,54]受到天然存在的抗生素gr米核酸孔的结构的启发,合成肽孔的