近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。
德国神经病学系的莱比锡大学医学中心,B Max Planck人类认知与脑科学研究所,神经病学系,莱比锡,德国莱比锡认知神经病学诊所,莱比锡大学医院,莱比锡,德国莱比锡,德国D Banner Alzheimer的Alzheimer Institutes Phoenix, AZ, USA g School of Mathematics and Statistics (KC), Neurodegenerative Disease Research Center (EMR), Arizona State University, USA h Department of Neurology, College of Medicine – Phoenix (KC), Department of Psychiatry (EMR), University of Arizona, USA e Neurogenomics Division, Translational Genomics Research Institute, University of Arizona, and Arizona State University, Phoenix,美国亚利桑那州立大学I横幅 - 阿里佐纳州立大学神经退行性疾病研究中心,生物设计学院,亚利桑那州立大学,大学,亚利桑那州,美国亚利桑那州坦佩市J.
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管这种解决方案具有众多优点,但在操作使用方面却受到严重限制,特别是几乎不可能实现免眼交互,而且在湍流条件下使用触摸屏极其复杂。我们研究了物理特性对克服这些弱点的贡献,方法是引入一种形状可变的触摸屏,该触摸屏具有可供用户手部休息的褶皱。在模拟器中,我们已经在各种湍流和脑力负荷的驾驶条件下评估了该表面。结果表明,褶皱通过稳定手臂和手部,有助于减少体力消耗。这种物理特性还与更好的驾驶任务表现以及对飞机系统状态的更好态势感知有关,这肯定是因为褶皱提供的形状具有更好的视觉特性(显著性),使得监控它们在注意力资源方面成本更低。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,这肯定是因为折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
背景:自 2013 年以来,NASA JSC ARES 一直与 T STAR 和德克萨斯 A&M 大学 (TAMU) 合作,创建与政府、学术界和私营企业共同开发的原型仪器项目。NASA 为 T STAR 提供需求和资金,然后 T STAR 与 TAMU 教员合作,指导高年级本科生 Capstone 团队设计、测试和交付工作原型。这个 LIT 原型遵循了一系列之前的 T STAR 项目,这些项目评估并交付了月球表面 EVA 部署工具的概念,包括 SMART Stick、甘道夫权杖 [1] 和巫师权杖 [2]。用于表面科学仪器和样本收集的探测车原型已通过移动分析月球平台 (MALP) [3] 和 HELIX 重力测量概念 [4] 进行了演示。 24 财年 LIT 的资金由 NASA JSC 月球指挥与控制互操作性 (LUCCI) 项目提供,该项目专注于识别和标准化多个月球表面元素之间的接口,每个接口由具有独特硬件、软件、网络、电源和通信要求的供应商开发。
近年来,许多飞机制造商都提出了基于触摸屏的创新驾驶舱概念。尽管具有大量优势,但此类解决方案在操作使用方面受到严重限制,特别是几乎不可能实现无需注视的交互,而且在湍流条件下使用触摸屏非常复杂。我们通过引入一种形状可变的触摸屏来研究物理特性对克服这些弱点的贡献,这种触摸屏提供了可供用户手部休息的褶皱。在模拟器中,在湍流和脑力负荷各不相同的驾驶条件下,对该表面进行了评估。结果表明,褶皱有助于通过稳定手臂和手部来减少体力消耗。这种物理特性还与驾驶任务中的更好表现以及对飞机系统状态的更好态势感知有关,最肯定的原因是折叠提供的形状具有更好的视觉特性(显著性),使得对它们的监控在注意力资源方面成本更低。
铁-氮-碳 (Fe-N-C) 材料已成为铂族金属的有前途的替代品,用于催化质子交换膜燃料电池中的氧还原反应 (ORR)。然而,它们较低的固有活性和稳定性是主要障碍。本文报道了一种在具有高度弯曲表面的分级多孔碳上具有密集 FeN 4 位点的 Fe-N-C 电催化剂 (表示为 FeN 4 - hc C)。FeN 4 - hc C 催化剂在酸性介质中表现出优异的 ORR 活性,在 0.5 m H 2 SO 4 中具有 0.85 V 的高半波电位(相对于可逆氢电极)。当集成到膜电极组件中时,相应的阴极显示出 0.592 W cm −2 的高最大峰值功率密度,并在恶劣的 H 2 /空气条件下表现出超过 30 000 次循环的运行耐久性,优于以前报道的 Fe-N-C 电催化剂。这些实验和理论研究表明,弯曲的碳载体可以微调局部配位环境,降低 Fe d 带中心的能量,并抑制含氧物质的吸附,从而提高 ORR 活性和稳定性。这项工作为 ORR 催化的碳纳米结构-活性相关性提供了新的见解。它还为设计用于能源转换应用的先进单金属位点催化剂提供了一种新方法。
高的微生物多样性为环境和人类健康带来了广泛的好处,这有助于生态系统稳定性,营养循环和病原体抑制。在建筑环境中,建筑设计,人类活动和清洁方案等因素会影响微生物群落。这项研究使用16S rRNA基因扩增子测序和浅shot弹枪测序研究了景观设计对日本东京“有远见的实验室”展览中微生物多样性和功能的影响。尽管样本量有限,但研究表明,与其他博物馆地区相比,有远见的实验室样品可能显示出更高的微生物多样性。潜在的不同微生物群落结构可能与采样位置相关。,尽管如此,在样品中毒力因子或抗菌抗性基因中仍未观察到一致的模式。代谢功能分析显示出不同的谱,表明可能受到策划景观可能影响的多种生态相互作用。这表明策划的景观设计可能有可能增强微生物多样性,突出了可能创造更健康,更可持续的建筑环境的途径。然而,毒力因子和抗菌抗性基因缺乏一致的模式强调了微生物群落动力学的复杂性。
先进的成像技术已广泛应用于各种生物学研究。目前,生物应用中采用了多种成像方式,包括医学成像、诊断、生物识别和基础生物学研究。因此,对更快、更清晰、更准确的成像技术的需求不断增加,以支持复杂的生物学研究。然而,由于传统光学元件体积庞大,系统复杂性高,成像设备性能的提升受到限制。为了解决这个问题,超表面是一种扁平而紧凑的光学元件,已被视为生物成像的潜在候选者。在这里,我们全面讨论了超表面在生物学中为各种成像应用提供支持的功能,包括它们的工作原理和设计策略。此外,我们将传统成像方式与基于超表面的成像系统进行了比较。最后,我们讨论了当前面临的挑战并提出了超表面的未来前景。