基础设施中的抽象表面裂纹如果没有有效维修,可能会导致明显的恶化和昂贵的维护。手动修复方法是劳动力密集的,耗时的,不精确的,因此很难扩展到大面积。尽管机器人感知和操纵的进步已经进行了自主裂纹修复的进展,但现有方法仍然面临三个关键挑战:(i)在机器人的坐标框架内准确定位裂缝,(ii)对改变裂纹深度和宽度的适应性,以及(iii)在现实情况下对修复过程的验证。本文使用具有先进感应技术的机器人技术提出了一种自适应的自主系统,用于表面裂纹检测和修复,以增强人类的精度和安全性。系统使用RGB-D摄像头进行裂纹检测,用于精确测量的激光扫描仪以及用于材料沉积的挤出机和泵。为了应对关键挑战之一,激光扫描仪用于增强裂纹坐标以进行准确定位。此外,我们的方法表明,一种自适应裂纹填充方法比固定速度方法更有效,更有效,实验结果证实了精度和一致性。此外,为了确保现实世界的适用性和测试可重复性,我们使用3D打印的裂纹标本引入了一种新颖的验证程序,以准确模拟现实世界中的条件。关键字:机器人基础设施维护裂纹维修自适应维修最终效果设计计算机视觉1.这项研究通过证明自适应机器人系统如何减少对手动劳动的需求,提高安全性并提高维护操作的效率,最终为更复杂和集成的建筑机器人铺平道路,从而为建筑中人类机器人相互作用的发展贡献。在基础设施维持领域的引入,有效的检测和修复表面裂纹是最持久和最具挑战性的问题之一。表面裂纹通常是非结构性的,但由于水分或化学入口而导致长期恶化。随着时间的流逝,这些次要缺陷可能会传播并在结构上显着,可能导致昂贵的维修甚至灾难性的失败。传统的裂纹维修方法,例如倒入,填充,密封,压力倾泻和挖掘挖掘[1],在很大程度上依赖手动劳动,并且通常会导致不一致的维修质量,同时带来了主要的安全风险。此外,手动裂纹维修可能是一个耗时的过程,可能会导致受影响社区的恢复的重大延迟。,例如,从2016年到2018年,旧金山国际机场跑道的地表裂纹维修直接占有近半百万美元,
摘要:表面裂纹是高速导轨(HSR)平板轨道中的典型缺陷,可以导致结构性恶化并降低轨道系统的服务可靠性。但是,如何有效检测和量化表面裂纹的问题目前尚未解决。在本文中,采用了一种基于红外热成像的新型裂纹检测方法来量化轨道板板上的表面裂纹。在这种方法中,首次使用非缩放的Contourlet变换(NSCT)基于图像 - 增强算法处理的红外摄像头的轨道平板的热合器,并且裂缝是通过边缘检测算法的。接下来,为了定量检测表面裂纹,提出了一种像素安排方法,从而可以获得裂纹宽度,长度和面积。最后,在实验室测试中验证了所提出方法在不同温度下的检测准确性,在该测试中,倒入平板的比例模型,并使用温度控制的柜子来控制温度变化过程。结果表明,所提出的方法可以有效地增强图像中表面裂纹的边缘细节,并且可以有效地提取裂纹区域。裂纹宽度的量化的准确性可以达到99%,而裂纹长度和面积的量化的准确性为85%,这基本上满足了HSR-SLAB-TRACK-TRACK-TRACK检查的要求。这项研究可以打开基于IRT的轨道板检查在HSR操作中的可能性,以提高缺陷检测的效率。
在进行机械实验时,正确确定断裂的发作至关重要。通常是通过视觉检查进行的,这里提出了一种基于图像的机器学习方法来对破裂和未裂缝的标本进行分类。它产生了客观化和自动化裂纹检测的潜力,从而消除了实验后处理中的不确定性和错误来源。评估了从77个实验获得的三个试样几何形状的30'000以上斑点图案。它们包括单轴张力,缺口张力以及轴对称V弯曲实验。统计纹理特征是从所有图像中提取的。它们包括第一阶(方差,偏度,峰度)和高阶统计纹理特征,即Haralick功能。根据Fisher的判别比率评估纹理信息的歧视能力,并确定并量化特征相关性。高歧视能力的图像纹理特征子集用于解析从简单的ceptron到feed-fordward和cascade神经网络的不同复杂性的神经网络体系结构。发现,对于所有实验,研究的纹理特征的一小部分是高度重要的。获得了多层,非线性和低复杂性馈送网络体系结构的分类精度,以99%的顺序使用。同时,即使使用了高歧视性功能特征,也表明线性分类器不足以鲁棒区分样品的状态。图形摘要: