本文对在独立衬底上生长的 GaN 外延层上的 Ni 肖特基势垒进行了表征。首先,通过对裸材料进行透射电子显微镜 (TEM) 图像和导电原子力显微镜 (C-AFM) 的纳米级电学分析,可以看到晶体中的结构缺陷以及电流传导的局部不均匀性。在外延层上制造的 Ni/GaN 垂直肖特基二极管的正向电流-电压 (IV) 特性给出的肖特基势垒高度平均值为 0.79 eV,理想因子为 1.14。对一组二极管的统计分析,结合温度依赖性测量,证实了在该材料中形成了非均质肖特基势垒。从 Φ B 与 n 的关系图中可以估算出接近 0.9 eV 的理想均质势垒,与通过电容-电压 (C – V) 分析推断出的势垒相似。通过 C-AFM 获得的局部 IV 曲线显示了电流传导开始点的不均匀分布,这又类似于在宏观肖特基二极管中观察到的电流传导开始点。最后,在不同温度下获得了在无缺陷区域制造的二极管的反向特性,并通过热电子场发射 (TFE) 模型描述了其行为。
agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com, bcharles.lee@sksiltron.com, candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、 candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、 candrey.soukhojak@sksiltron.com, dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、dtawhid.rana@sksiltron.com agil.chung@sksiltron.com、bcharles.lee@sksiltron.com、candrey.soukhojak@sksiltron.com、 dtawhid.rana@sksiltron.com
在本信中,我们介绍了基于五叠自组装 InAs/InAlGaAs 量子点作为活性介质的长波长微盘激光器,这些量子点通过固体源分子束外延在 InP(001)衬底上生长。直径为 8.4 lm 的量子点微盘激光器在脉冲光泵浦条件下在室温下工作。实现了 1.6 lm 的多波长激光发射,低激光阈值为 30 lm W,品质因数为 1336。通过收集到的近场强度分布的“S”形 L-L 曲线、线宽变窄效应和强散斑图案验证了激光行为。所展示的具有低阈值和超紧凑占地面积的长波长激光器可以在集成气体检测和高度局部化的无标记生物和生化传感中找到潜在的应用。
Yongchen Liu 1 , Wilder Acuna 1 , Huairuo Zhang 2,3 , Dai Q. Ho 1 , Ruiqi Hu 1 , Zhengtianye Wang 1 , Anderson Janotti 1 , Garnett Bryant 4 , Albert V. Davydov 2 , Joshua M. O. Zide 1 , and Stephanie Law 1*
我们展示了与 InP 衬底几乎晶格匹配的低噪声随机合金 (RA) Al 0.85 Ga 0.15 AsSb(以下简称 AlGaAsSb)雪崩光电二极管 (APD)。与数字合金 (DA) 相比,RA 由于易于生长而易于制造。910 nm 厚的 RA AlGaAsSb 在 450 C 左右的低温下生长,通过抑制吸附原子的表面迁移率来减轻相分离。通过 X 射线衍射、Nomarski 和原子力显微镜图像验证了 RA AlGaAsSb 材料的高质量。电容-电压测量发现背景掺杂浓度为 6-7 10 14 cm 3,表明 RA AlGaAsSb 材料中的杂质密度非常低。电流-电压测量是在室温下黑暗条件和 455 nm 激光照射下进行的。击穿发生在 58 V 时。增益为 10 时,暗电流密度为 70 l A/cm 2 。该值比之前报道的 DA AlAs 0.56 Sb 0.44 APD [Yi 等人,Nat. Photonics 13, 683 (2019)] 低三个数量级,比 DA AlGaAsSb [Lee 等人,Appl. Phys. Lett. 118, 081106 (2021)] 低一个数量级,与 RA AlInAsSb APD [Kodati 等人,Appl. Phys. Lett. 118, 091101 (2021)] 相当。此外,测得的过量噪声显示 k(碰撞电离系数比)较低,为 0.01。这些噪声特性使 RA AlGaAsSb 倍增器适合商业应用,例如光通信和 LiDAR 系统。
β -氧化镓(β -Ga 2 O 3 )的带隙约为4.9 eV [ 1 ],作为一种新兴的超宽带隙半导体,近年来得到了广泛的研究。由于其具有成熟的块体材料制备、优异的Baliga 品质因数和高电子迁移率等优点[ 2 ],β -Ga 2 O 3 被认为是一种很有前途的日盲紫外(UV)光电探测器、气体传感器、紫外透明导体和大功率电子器件的候选材料[ 3 ,4 ]。虽然块体β -Ga 2 O 3 是外延生长高质量β -Ga 2 O 3 薄膜的理想衬底,但其昂贵的成本和较差的热导率仍然阻碍了同质外延的商业化。因此,在低成本、大尺寸衬底上异质外延β -Ga 2 O 3 薄膜仍然具有重要意义。
由于能量的限制及其对总损耗的影响,介电基板的选择在射频频率下起着重要作用。与能量存储相关的基板介电常数显著影响电路在较高频率下的性能。根据介电常数行为,基板被分为有损介电常数或良好介电常数。损耗角正切值取决于介电常数,并影响传输线的品质因数。在硅中,由于金属-半导体结,金属接触会产生肖特基接触。这需要进行适当的公式化和建模,以预测电路行为。本文研究并详细介绍了掺杂、载流子迁移率、频率等各种现象是影响介电常数的主要因素,并研究了它们对损耗角正切的作用
摘要:ATLAS 和 CMS 实验预测高亮度大型强子对撞机(HL-LHC)最内层像素探测器的辐射注量高达 1 × 10 16 1 MeV n eq /cm 2。辐射剂量的增加将导致探测器性能下降,例如漏电流和完全耗尽电压增加,信号和电荷收集效率降低,这意味着有必要开发用于甚高亮度对撞机的抗辐射半导体器件。在我们前期对超快三维沟槽电极硅探测器的研究中,通过模拟不同最小电离粒子(MIP)撞击位置下的感应瞬态电流,验证了从 30 ps 到 140 ps 的超快响应时间。本工作将利用专业软件有限元技术计算机辅助设计(TCAD)软件框架,模拟计算探测器在不同辐射剂量下的全耗尽电压、击穿电压、漏电流、电容、加权场和MIP感应瞬态电流(信号)。通过分析模拟结果,可以预测探测器在重辐射环境下的性能。像素探测器的制作将在中国科学院微电子研究所的CMOS工艺平台上进行,采用超纯高电阻率(高达10 4 ohm·cm)硅材料。
这是作者的同行评审并被接受的手稿。但是,一旦编辑和排版完成,记录的在线版本将与此版本不同。
本文描述了n型GaAs衬底的晶体取向对在不同n型GaAs衬底取向(即(100)、(311)A和(311)B GaAs面)上生长的厚度为120nm的磺化聚苯胺 (SPAN) 薄膜电学性能的影响。利用室温和不同温度(60−360 K)下的电流密度-电压 (J−V) 进行电学表征。从正向J−V特性中提取了理想因子 (n)、肖特基势垒高度 (Φb) 和活化能 (Ea)。从J−V结果可知,SPAN/(311)B GaAs混合器件在0.5 V时的整流值高于在(100)和(311)A GaAs面上生长的SPAN的整流值。此外,随着这三个异质结器件的温度升高,Φ b 的值增加,n 下降,E a 上升。E a 测量表明,SPAN/(311)B n 型 GaAs 异质结构的 E a 低于在 (100) 和 (311)A n 型 GaAs 平面上生长的 SPAN 样品。这可能与 SPAN/(311)B 中的缺陷数量低于其他两个样品有关。这些结果使得在高指数 GaAs 平面上生长的厚度为 120 nm 的 SPAN 成为未来器件应用的有趣混合器件。