摘要 —TDFA 波段(2 µ m 波段)已被视为下一代光通信和计算的有前途的光学窗口。吸收调制是基本的可重构操作之一,对于大规模光子集成电路至关重要。然而,在 TDFA 波段探索吸收调制的努力很少。在这项工作中,基于绝缘体上硅 (SOI) 平台设计和制造了用于 TDFA 波段波长的可变光衰减器 (VOA)。通过将 200 µ m 的短 PIN 结长度嵌入波导,制造的 VOA 在 2.2 V 时表现出 40.49 dB 的高调制深度,并具有由等离子体色散效应引起的快速响应时间 (10 ns)。结合法布里-珀罗腔效应和硅的等离子体色散效应,衰减器可实现超过 50 dB 的最大衰减。这些结果促进了2μm波段硅光子集成的发展,并有望促进光子衰减器在串扰抑制、光调制和光通道均衡方面的应用。
Aeroflex / Weinschel 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2 型号索引。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4-6 产品索引 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.6-8 快递和 Argosy 销售。。。。。。。。。。。。。。。。。。。。。。。。。.9-11 新产品 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.12-14 固定同轴衰减器。。。。。。。。。。。。。。。。。。。。。。.15-80 终端和负载。。。。。。....................81-132 可变衰减器(连续和步进) ........133-150 功率分配器和分配器 ....................151-164 移相器 ......................。。。。。。.165-170 直流模块 .。。。。。。。。。。。。。。。。.................171-176 同轴适配器 ............................... 177-184 平面盲配® 连接器 .................185-192 Planar Crown ® 连接器系统 ................193-198 可编程衰减器和衰减器/开关控制器 ..................199-260 子系统和配件 .....................261-282 美国销售代表 ........................283 全球销售代表 ...................284 订购信息 ................。。。。。。。。。.285 按字母顺序索引。。。。。。。。。。。。。。.............286-287 RoHs 合规性 ............。。。。。。。。。。。。。。。。。。。.287
Compact motorized beam expanders MEX 146 Compact motorized laser beam expanders MEX-V2 148 High-power motorized beam expanders MEX-HP 150 High-power motorized beam expanders MEX-HP-V2 152 Vertical motorized laser beam expander MEX-V 154 Variable beam expanders VEX and reducers VRE 156 Fixed ratio beam expanders FEX 158 Motorized laser power attenuators LPA 159先进的电动激光衰减器LPA-A 160手动激光衰减器LPA-M 161 OEM激光功率衰减器LPA-OEM LPA-OEM 162未极化的光束激光激光功率衰减器LPA-U LPA-U 163平面转换器FTC 164摩托车旋转器MRO 165摩托车Mro 165
摘要 本文展示了一种使用基于聚合物的 3D 打印制造的超轻型微波旋片衰减器 (RVA)。此外,导电聚乳酸 (PLA) 首次在 X 和 Ku 波段(8 至 18 GHz)上得到严格表征;而丙烯腈丁二烯-苯乙烯 (ABS) 也同样在 Ku 波段(12 至 18 GHz)上得到表征。利用导电 PLA 表征过程的结果,创建了一个电磁模型来预测 RVA 的性能。结果显示,即使内部几何特征复杂、混合了介电和导电 PLA 建筑材料、多个部件组装和机械旋转中心部分,我们的实验概念验证原型 RVA 仍表现出优异的 Ku 波段测量性能。与固定(即不可移动)的 3D 打印结构相比,这种可调微波控制装置代表了增材制造的更高水平的功能,为其他团体在不久的将来常规 3D 打印定制微波组件和子系统开辟了道路。
10 测试设备................................................................................................................................166 10.1 简介....................................................................................................................166 10.2 电缆....................................................................................................................167 10.2.1 电缆衰减......................................................................................................168 10.2.2 电缆耦合......................................................................................................169 10.2.3 电缆屏蔽......................................................................................................170 10.2.4 传输阻抗......................................................................................................170 10.2.5 使用铁氧体磁珠改善电缆性能 .............................................................174 10.2.5.1 阻抗 .............................................................................................174 10.2.6 设备互连(不匹配)....................................................................................176 10.3 信号发生器.............................................................................................................177 10.4 衰减器.............................................................................................................178 10.4.1 测试中使用的衰减器场地验证程序................................................178 10.4.2 衰减器
摘要 本文展示了一种使用基于聚合物的 3D 打印制造的超轻型微波旋片衰减器 (RVA)。此外,导电聚乳酸 (PLA) 首次在 X 和 Ku 波段(8 至 18 GHz)上得到严格表征;而丙烯腈丁二烯-苯乙烯 (ABS) 也同样在 Ku 波段(12 至 18 GHz)上得到表征。利用导电 PLA 表征过程的结果,创建了一个电磁模型来预测 RVA 的性能。结果显示,即使内部几何特征复杂、混合了介电和导电 PLA 建筑材料、多个部件组装和机械旋转中心部分,我们的实验概念验证原型 RVA 仍表现出优异的 Ku 波段测量性能。与固定(即不可移动)的 3D 打印结构相比,这种可调微波控制装置代表了增材制造的更高水平的功能,为其他团体在不久的将来常规 3D 打印定制微波组件和子系统开辟了道路。
WTVA是EMC的宽带温度可变衰减器。该产品提供了从直流到20 GHz的线性良好转移,从-55˚C到 +125°C。EMC Technology的Thermopads®是微波吸收性衰减器,可提供随温度变化的功率耗散。它们用于纠正放大器和其他活性组件的增益变化,这些分量往往会在温度上获得异常。WB2样式使用厚实的膜金线粘合端子。SMTF样式是符合ROHS的表面安装配置。WTVA是EMC Thermopad的首选版本,用于卫星通信,宽带EW应用以及高频和宽带放大器。
项目 1 的反射系数(10 dB 衰减器)项目 1 的传输系数(10 dB 衰减器)项目 2 的反射系数(40 dB 衰减器)项目 2 的传输系数(40 dB 衰减器)项目 3 的反射系数(50 ohm 空中线路)项目 3 的传输系数(50 ohm 空中线路)项目 4 的反射系数(50 ohm 空中线路反向)项目 4 的传输系数(50 ohm 空中线路反向)项目 5 的反射系数(25 ohm 空中线路)项目 5 的传输系数(25 ohm 空中线路)项目 6 的反射系数(25 ohm 空中线路反向)项目 6 的传输系数(25 ohm 空中线路反向)项目 7 的反射系数(短路)项目 8 的反射系数(终端)与项目 1 在 2 GHz 时的传输系数的不确定性。在 10 GHz 时重复。在 18 GHz 时重复。与项目 2 在 2 GHz 时的传输系数的不确定性进行比较。在 10 GHz 时重复。在 18 GHz 时重复。与项目 3 在 2 GHz 时的反射系数的不确定性进行比较。在 10 GHz 时重复。在 18 GHz 时重复。与项目 3 在 2 GHz 时的传输系数的不确定性进行比较。在 10 GHz 时重复。在 18 GHz 时重复。与项目 5 在 2 GHz 时的反射系数的不确定性进行比较。在 10 GHz 时重复。在 18 GHz 时重复。与项目 5 在 2 GHz 时的传输系数的不确定性进行比较。在 10 GHz 时重复。在 18 GHz 时重复。与 I 的反射系数的不确定性进行比较