摘要 — 本文介绍了用于 Ka 波段单脉冲雷达跟踪的调制超表面天线的设计、制造和测试。天线由圆形、薄接地介电层组成,该介电层由形状和大小经过调制的金属贴片纹理印刷而成。贴片层可以建模为空间可变的电容阻抗片,它与接地平板贡献一起提供整体调制电感边界条件。天线孔径被分成四个相同的角象限,每个角象限在由单个单极子发射器激发时都会辐射独立的宽边波束。四个发射器中的每一个都会激发 TM 圆柱形表面波 (SW),该波被超表面逐渐转换为漏波 (LW)。通过适当设计超表面调制,4 个子孔径被虚拟分开。为此,校准了 LW 衰减常数以充分释放每个单独的 SW,从而防止相邻区域之间的相互作用。因此,印刷结构不受任何物理分离的限制,而仅受等效边界条件的连续变化的限制。通过将源激励与简单的相位方案相结合,可获得单脉冲型线性偏振光束。值得注意的是,该解决方案不会影响结构的整体轻便性、低轮廓、馈源简单性和低制造成本,这相对于更传统的基于波导的解决方案具有固有优势。
如今,扫描声学显微镜 (SAM) 已成为电子元件和组件中无损质量评估和缺陷识别的标准手段。航空航天工业中所谓的飞行模型部件就是一个特殊的例子。这些集成到卫星、宇宙飞船或飞机中的部件需要经过大量测试才能达到高可靠性。然而,每次 SAM 测试都需要将部件浸入去离子水中,这可能被视为污染物。在理想情况下,使用的耦合液应该已经是部件标准“生命周期”的一部分,包括制造、测试和筛选。自然的候选者是异丙醇(用于清洁)和氟碳液体,例如 Fluorinert ™ FC-43、Galden ® D02 和 Galden ® HT80(用于按照 MIL-STD-750 和 MIL-STD-883 标准进行密封测试),尽管它们存在已知缺点,例如异丙醇易蒸发且可能危害人体健康。文献中关于使用这些液体作为声耦合液的信息很少。甚至用于理论适用性评估的关键参数,例如声速或衰减常数,也仅部分已知(参见表 1 和表 4 中缺失的文献参考)。对于标准耦合液体水,在 0 °C 至 100 °C 的温度下的声速值是众所周知的 [ 1 ]。对于异丙醇和 FC-43,已经发表了一些研究,并报告了 20°C 时的声速值 [ 2 , 3 ](见表 1)。据我们所知,没有关于 D02 和 HT80 的文献数据。20°C 时无空气蒸馏水的声音衰减为 α /