表 2 详细列出了 DO-160G 第 22 节雷电感应瞬变敏感度标准中针对引脚注入测试的波形 3、波形 4/波形 1 和波形 5A 所规定的开路电压 (V OC ) 和短路电流 (I SC )。DO-160G 4 级测试的峰值电流远大于标准工业浪涌 IEC 61000-4-5 峰值电流。DO-160G 标准的波形形状和上升/衰减时间明显长于 IEC 61000-4-5 标准所规定的波形形状和上升/衰减时间,如图 2 所示。由于 DO-160G 第 22 节雷电标准涉及大量能量,因此使用外部 33 Ω 或 47 Ω A 引脚和 B 引脚总线限流电阻对 ADM2795E-EP 进行测试,以测试至 GND 2 。除了 ADM2795E-EP 集成 EMC 保护电路外,还需要这些电阻。但是,当测试到 GND 1 时,不需要限流电阻。ADM2795E-EP i 耦合器隔离技术可在出现这些极端瞬变时保护设备。
在这项研究中还研究了吸收和X(UV)射线激发发光特征。Yb 3+的电荷转移发光显示了最大值在345 nm和515nm处的双峰光谱,这拟合了所需的能量差约10000 cm“ 1” 1来自2 fs/2和2¥〜m yb的分离。激发光谱(em。= 350 nm)是圆形240 nm的峰值,这与观察到的吸收光谱是一致的。在360 nm处测得的80 K发光衰减显示了30 ns的主要衰减时间,而在室温下,由于发光猝灭,它缩短至0.8 ns。
摘要:量子 - 孔(QW)混合有机 - 无机钙钛矿(HOIP)晶体,例如A 2 PBX 4(a = ba,pea; x = br,i),表现出具有巨大的潜在潜力,作为与其个体的三型(3D)(3D)(3D)对抗分配相比的较大能量辐射检测的刺激性材料。将3D插入QW结构中导致了新的结构,即2 BPB 2 x 7钙钛矿晶体,并且它们可能具有有希望的光学和闪烁特性,可用于更高的质量密度和快速的时机闪烁体。在本文中,我们研究了基于碘的QW Hoip晶体的晶体结构以及光学和闪烁特性,A 2 PBI 4和2 MAPB 2 I 7。A 2 PBI 4晶体表现出绿色和红色发射,最快的PL衰变时间<1 ns,而A 2 MAPB 2 I 7晶体的高质量密度> 3.0 g/ cm 3,可调节的较小的带盖<2.1 eV <2.1 eV,由量子和介电限制。我们观察到2 PBI 4和PEA 2 MAPB 2 I 7在X-和γ射线激发下显示发射。我们进一步观察到,与QW Hoip溴化物闪光灯相比,一些QW Hoip碘化物闪烁体显示出较短的辐射吸收长度(在511 keV时约3厘米)和更快的闪烁衰减时间成分(约0.5 ns)。最后,我们研究了基于碘化物的QW HOIP晶体在10 K(约10个光子/KEV)的光屈服,而在室温下,它们仍显示出脉冲高度光谱,其光屈服在1到2个光子/keV之间,其低率仍然比溴化物低5倍。■简介较低的光线屈服可能是基于碘化物的QW hhoip闪烁器的缺点,但是我们研究的有希望的高质量密度和衰减时间结果可以为进一步改进快速时期应用提供正确的途径。
始终运行发射器可节省大量电量。在每秒进行三次轮询的系统中,系统仅约 1% 的时间处于活动状态。在睡眠状态下,TRF79xxA 几乎不消耗任何电量,而 MSP430 消耗的电流量可忽略不计(约 0.8 µA)。在持续几毫秒的活动状态下,TRF7970A 会快速打开、初始化,并执行发射器突发。这会打开发射器约 20 µs。在关闭之前,比较器会初始化,并启动计时器来测量时间。计时器一直运行,直到比较器发出中断,指示已超过阈值电压。此时的定时器时间是信号的衰减时间。如前所述,较长的时间表示功率耦合,这意味着卡可能已处于现场。
摘要。超导谐振器具有高品质因数,因此存储能量的衰减时间更长,因此可提供卓越的性能。这些超导谐振器的一个新兴应用是量子计算和量子信息科学,它使我们能够探索和深化对物质的理解,而这些发现可能无法通过传统计算和技术进行探索。量子处理架构使用在微波范围内工作的谐振器和互连电路,以及超导带状线技术和低噪声电子设备进行切换和通信。可以通过将这些设备嵌入三维谐振器中来延长相干时间,从而提高这些设备的性能,从而通过降低错误率并在量子态衰减之前允许更多操作(计算)来提高设备的实用性。在这里,我们简要回顾了当前用于量子计算的微波技术以及提高量子比特相干时间的进展。
purcell增强量子点(QD)单光子发射和设备亮度的增加,已经证明了各种类型的微腔。在这里,我们提出了第一个实现截断的高斯形状的微腔与QD的截断。实施基于湿化学蚀刻和外延半导体过度生长。实验研究了腔模式及其空间纤维,并与模拟很好地吻合。可以通过制造设计可重复控制具有6000张Q-因子的基本模式波长,而29 L EV的小极化分裂可以重复控制,从而使腔体适应了特定的QD。最后,通过温度调节对腔内QD的过渡进行调节和关闭共振。在共振上减少了一个以上的因子减少的衰减时间清楚地表明purcell的增强,而G(2)(0)¼0.057的二阶相关测量结果证明了QDS单光子特性得以保留。
ANSI/ESDS20.20 和 ANSI/ESD STM2.1 1000 级洁净室 99% 涤纶长丝,1% 碳长丝 2/斜纹,5mm 网格 170g/y (122 g/m^2) +2% 60 英寸 (152cm) +2% 经线:188 端/英寸 (74 端/厘米) +5% 纬线:94 端/英寸 (37 端/厘米) +5% 经线:涤纶 100D/36F;纬线:涤纶 100D/36F;表面电阻:<10^7Ω 摩擦电荷:经线:39V 纬线:27V 衰减时间:+0.01(42% RH,21C)秒 透气性:4.0 cc/cm^2/秒 撕裂强度:经线:2.5 kg 纬线:1.9kg 拉伸强度:经线:63 kg 纬线:70.6kg 保色性:4-5 级 过滤 0.3μm(52%) 效率 0.5μm(57%) 1.0μm(75%) 5.0μm(78%)
在Terahertz(THZ)频率范围内产生单色电磁辐射,数十年来一直是一项艰巨的任务。在此,证明了介电材料KY(MOO 4)2中光音子单色子THZ辐射的发射。ky的分层晶体结构(MOO 4)2导致红外剪切晶格振动的能量低于3.7 MeV,对应于低于900 GHz的频率,而基于固体的单色辐射源很少见。直接通过5 ps长宽带Thz脉冲激发,ky中的红外活性光学振动(MOO 4)2重新发射窄带子Thz辐射作为数十无picseconds的时变偶极子,对于振荡器而言,频率低于1 THz,这对于振荡器而言异常长。如此长的连贯发射允许检测超过50个辐射的辐射,频率为568和860 GHz。与使用材料的化学稳定性相同的较长衰减时间表明,THZ技术中的各种可能应用。
数据操作、分析和显示 • 算术(+、-、×、/、附加) • 缩放、标准化和基线减法 • 裁剪 • 网格显示、对数/线性刻度 • 2D、3D、轮廓和颜色图 • 文本显示和编辑选项中的数据显示 • 使用非线性最小二乘拟合程序进行完全衰减数据拟合 • 指数重卷积或尾部拟合 • 1-4 个独立的指数衰减时间,固定或作为自由拟合参数 • 移位参数,固定或作为自由拟合参数 • 背景拟合,固定或作为自由拟合参数 • 卡方拟合优度检验 • 加权残差,Durbin-Watson 参数 • 自相关函数 • 各向异性计算 • 提取时间分辨光谱(TRES 数据切片) • 全面的测量和文件属性用于记录保存 • ASCII/CSV 数据输入和输出选项 • 复制和粘贴选项以方便演示和出版 • 可选的高级荧光寿命数据分析包
摘要:等离激元纳米剂是一种新型的超小型激光器,由于其光线和快速载体动力学特征的破坏衍射极限,因此获得了广泛的兴趣。通常,对于等离激子纳米剂需要解决的主要问题是光学和欧姆损失引起的高损失,这导致了低质量因子。在这项工作中,设计和制造了具有较大界面区域的Ingan/gan纳米板等离激元纳米剂,其中SPS和激子之间的重叠可以得到构成。激光阈值计算为〜6.36 kW/cm 2,其中最大最大宽度(FWHM)从27 nm下降到4 nm。和502 nm处的快速衰减时间(刺激激光的尖峰)估计为0.42 ns。增强的激光特性主要归因于低折射率材料中电磁波的强限制,这证明了SPS和激子之间的近场耦合。这种等离子激光器应在数据存储应用程序,生物应用,光通信中有用,特别是对于集成到芯片上系统中的光电设备。