本研究研究了混凝土的辐射屏蔽特性,该特性融合了稻壳灰(RHA),牡蛎壳粉(OSP)和铁粉(FEP)。四个混凝土混合样品ି一种标准混凝土(C -M25)和三个具有40%RHA(C -RHA),OSP(C -SOSP)和FEP(C -FEP)的混凝土样品,作为良好的聚集物替换率ି,以后进行了ASTM C31。通过Epixs软件的插值来计算样品的光子衰减参数。总原子交叉 - 段(σT)值按以下顺序排名:C- FEP> c -osp> c -M25> c -c -rha。c -fep具有最大的MAC值,除了662ି1332KEV的能量范围,其中C -OSP表现出较高的值。C -fep的HVL在整个光子能量上是最高的,其值分别为3.07、4.05、5.34和5.70 cm,分别为356、662、1173和1332 KEV。c -fep在整个光子能量范围内达到了最大的z eff值,这归功于其高浓度的高z元素ିfe和ca。虽然混凝土样品的值接近,但C -fep以40 mfp获得了最低的EABF和EBF因子。c -fep是三个样品中最好的混凝土混合物,在考虑的所有辐射屏蔽参数方面达到了较高的值。与利用其他废物副产品的其他屏蔽材料相比,研究中的混凝土样品显示了材料的MAC和HVL的可比值。
当我们制造薄膜超材料并评估其传输衰减特性S 21 时,我们发现随着介电常数的增加,峰值频率降低至6.5 GHz、5.5 GHz、4.1 GHz和3.7 GHz。另外,使用Sr 2 Nb 3 O 10 作为介电层来制作器件,并且改变二维图案单元的单位尺寸,并且评价传输衰减特性S 21 。 当单元尺寸为5mm时,峰值频率出现在3.7GHz,而当单元尺寸为2mm时,峰值频率出现在大约10GHz。在 2016 年研究中研究的以 Ca 2 Nb 3 O 10 作为介电层的模型器件中也观察到了响应峰的类似单位尺寸依赖性。因此,在该技术中,根据介电层所使用的纳米片的介电常数和元件单元尺寸,
alpha发射器是下一代的治疗放射性核素,由于有利的化学和衰减特性,可能是优先的放射性核素,而不是β发射核素治疗实体瘤。alpha辐射导致直接,无法弥补的双链DNA比β辐射更频繁地破裂,因为其线性较高的线性能量转移,同时由于其较短的路径长度,因此在健康组织周围放置了围绕健康组织。
开发X射线设备,用于评估,评估图像质量以及质量保证计划所需的物理乳房幻像。理想情况下,这样的幻象应反映乳房的物理特征。首先,组成材料必须具有与乳房组织相同的X射线衰减特性。其次,所使用的幻象应反映实际器官的解剖特征,例如剪影,组成组织的3D分布和变异性(1,2)。所需的解剖现实主义可以源自具有专用乳房计算机层析成像(BCT)扫描仪(2,3)的临床图像,其空间分辨率相对较高。但是,这种方法受到从BCT扫描仪获得的临床乳房图像的全球稀缺限制(4-6)。相反,利用磁性
定制纳米材料在诊断、监测和药物领域具有广泛的医疗应用。纳米结构生物材料(如纳米颗粒、纳米纤维、纳米表面、纳米线和纳米复合材料)通过肽、蛋白质、核酸和药物功能化,以输送到细胞和器官。纳米材料具有独特的物理化学性质(如颗粒大小、颗粒形状、表面积、溶解度、多态性、表面电荷和疏水性),这意味着在配制药物以实现有效的药物输送、组织再生和诊断应用时必须考虑纳米材料。纳米材料独特的光学和 X 射线衰减特性可用于癌症光疗。纳米探针形式的纳米材料与其他功能性纳米颗粒结合用于恶性肿瘤的多模态成像。近年来,流行的生物材料已经实现了三维(3D)生物打印、器官芯片应用、免疫调节、细胞外囊泡研究、疫苗输送和抗病毒性能。
量子信号处理 (QSP) 使用大小为 2 × 2 的酉矩阵乘积来表示度为 d 的实标量多项式,并由 ( d +1) 个实数(称为相位因子)参数化。这种创新的多项式表示在量子计算中有着广泛的应用。当通过截断无限多项式级数获得感兴趣的多项式时,一个自然的问题是,当度为 d →∞ 时,相位因子是否具有明确定义的极限。虽然相位因子通常不是唯一的,但我们发现存在一致的参数化选择,使得极限在 ℓ 1 空间中具有明确定义。这种 QSP 的广义称为无限量子信号处理,可用于表示一大类非多项式函数。我们的分析揭示了目标函数的规律性与相位因子的衰减特性之间存在令人惊讶的联系。我们的分析还启发了一种非常简单有效的算法来近似计算 ℓ 1 空间中的相位因子。该算法仅使用双精度算术运算,并且当目标函数的切比雪夫系数的 ℓ 1 范数的上限为与 d 无关的常数时,该算法可证明收敛。这也是第一个在极限 d →∞ 中具有可证明性能保证的数值稳定相位因子查找算法。
量子信号处理 (QSP) 使用大小为 2 × 2 的酉矩阵乘积来表示度为 d 的实标量多项式,并由 ( d +1) 个实数(称为相位因子)参数化。这种创新的多项式表示在量子计算中有着广泛的应用。当通过截断无限多项式级数获得感兴趣的多项式时,一个自然的问题是,当度为 d →∞ 时,相位因子是否具有明确定义的极限。虽然相位因子通常不是唯一的,但我们发现存在一致的参数化选择,使得极限在 ℓ 1 空间中具有明确定义。这种 QSP 的广义称为无限量子信号处理,可用于表示一大类非多项式函数。我们的分析揭示了目标函数的规律性与相位因子的衰减特性之间存在令人惊讶的联系。我们的分析还启发了一种非常简单有效的算法来近似计算 ℓ 1 空间中的相位因子。该算法仅使用双精度算术运算,并且当目标函数的切比雪夫系数的 ℓ 1 范数的上限为与 d 无关的常数时,该算法可证明收敛。这也是第一个在极限 d →∞ 中具有可证明性能保证的数值稳定相位因子查找算法。
如今,材料必须满足高机械要求,同时在生产中具有成本效益。在塑料行业中,这是由所谓的聚合物混合物实现的,这是至少两个具有不同特性的聚合物的混合物。结果是低成本,同时为各自的应用量身定制材料。确保良好的机械性能,均匀的熔体,即必须在异质混合物中实现不同组分的均匀分散和分布。因此,塑料处理中的混合过程非常重要。但是,为了评估混合过程,必须以合适的方式进行测量,才能根据材料和过程属性进行透彻了解混合过程。这是设计新的混合元件并确保在处理过程中均匀融化的唯一方法,从而提供具有高机械要求的新材料。一种潜在的工具,不仅在定性上,而且在定量上,计算机断层扫描可能是一项有用的技术。但是,由于化学相似的聚合物结构,由一些光元素(C,H,N,O等组成。),不同塑料化合物的X射线衰减特性几乎相同,这就是为什么通过计算机断层扫描进行分析的原因。在这项工作中,通过使用异源聚丙烯(PP) - 聚苯乙烯(PS)混合来研究两种不同的方法来解决此问题。首先,使用氯仿将PS从PP中溶解,其次,将硫酸盐和硫酸钡颗粒添加到PS中,然后将其与PP混合。以这种方式,可以利用微型层析成像分析两个混合组分的体积分布,并可以量化混合物质量。
摘要:研究了含有石墨烯纳米片(GNS)的基于乙二烯 - 偏烯 - 烯烯 - 二烯单体(EPDM)单体(EPDM)单体(EPDM)的复合材料的机械,热和γ辐射衰减特性。还研究了聚乙烯乙二醇(PEG)作为兼容器来改善填充剂的分散体。结果表明,与EPDM相比,这些填充剂的综合使用导致机械性能的急剧增加,分别达到了伸缩强度和伸长率的123%和83%。相反,与基于EPDM/B/GN的复合材料相比,在包含EPDM GN和B的复合材料中添加PEG的复合材料具有较低的机械性能。然而,PEG的存在导致获得具有大量衰减系数的复合材料(EPDM/B/GNP),可对伽玛辐射(137 cs,662 keV)优于没有PEG的该复合材料。此外,复合EPDM,B和PEG在断裂时表现出伸长率153%,高于未填充的EPDM。此外,与未填充的EPDM相比,由100个PHR(III)氧化物(III)PHR组成的二元填充系统可导致EPDM复合材料的61%线性阻尼系数达到61%。分别使用扫描电子显微镜和能量分散X射线光谱获得的聚合物基质中形态和填充剂的状态的研究为理解影响伽马射线衰减特性的因素提供了有用的背景。最后,结果还表明,通过调整配方,可以调整用氧化物和石墨烯纳米纤维素增强的EPDM复合材料的机械和热性能。