B-梅森轻锥分布振幅(LCDA)是特性的基本数量 - 根据其组成夸克和胶子来构成b -mesons的内部结构。最初引入以捕获通用独家b -depay的本质,此后这些分布幅度自此在分解定理的发展中发挥了关键作用[1-8]。在众多硬性反应的领域中,分解定理突出了LCDA的内部矩(IM)的重要性,特别是在领先的贡献中。值得注意的是,IM具有至关重要的假名相关性,控制着诸如Leptonic衰变(B→γℓν)等多种过程中的领先功率表格相互作用[9],半衰弱的衰减(B→πℓν)[10]和Hadronic Decays(B→ππ)[11] [11] [11] [11]。此外,IM在构建LCDA模型中起着至关重要的作用[12-14]。当B -Meson衰减的分析超出树的水平时,对数力矩(LMS)变得必不可少,尤其是在诸如B→γℓν等精确研究中,在这些研究中,它们在其中主导了理论错误[15]。这强调了IM和LMS在促进我们对B -Meson衰减的理解中所发挥的关键作用,并强调它们在理论建模和精确计算中的重要性。尽管IMS和LMS的重要性至关重要,但我们对它们的理解仍然有限。这主要是由于它们对非扰动动力学的信息进行编码,从而使其计算从QCD的第一个原理中挑战。IM和LMS上的现有结果在很大程度上取决于模型,缺乏令人满意的约束。这种限制阻碍了B物理学中相关研究中的口音预测的精度。因此,显然必须以模型独立的方式确定这些时刻的确定,从而解决我们知识中的关键差距并推进B物理学领域。诸如晶格QCD之类的非扰动甲基甲基苯甲酸酯是
傅里叶变换红外衰减的总反射(FTIR-ATR)已广泛用于研究表面和界面上的吸附和反应。与其他技术不同,例如荧光,无线电标记和电动检测,FTIR-ATR不需要额外的标签,并且可以提供有关系统的大量信息。因此,FTIR-ATR具有许多潜在的生物学应用,并且有望成为一种高敏感,无标签和通用的生物传感方法。近年来,FTIR-ATR生物学应用的主要研究工作集中在(a)原位观察蛋白质或细胞吸附[1-5]; (b)生物膜的结构和方向分析[5-11]; (c)检查酶促反应[12,13]。我们的兴趣集中于FTIR-ATR的生物传感应用,以检测与固定的DNA或寡核苷酸(Oligo)探针有关的生化过程。
抽象的超晶体是极度弱相互作用的巨大颗粒,从冷冻的父粒子的后期继承了其遗物丰度。在超对称模型中,Gravitinos和Axinos代表了两个最动机的超级弹力。在本文中,我们从各种宇宙学观察中对这些情况进行了限制,这些观察探究了它们的生产机制以及早期宇宙中的SuperWIMP运动学特性。我们特别考虑了大爆炸核合作论和宇宙微波背景(频谱解剖和各向异性)的观察结果,这些背景限制了后期衰减的分数能量注入,以及从Lyman-α森林和其他小规模结构可观察的温暖和混合的暗物质约束。我们讨论了compentaryconstraintssfromcolliderexperiments,andargeeth宇宙学考虑排除了Gravitino和Axino Superwimp参数空间的重要部分。
已研究了将Barite-fuorspar矿物废物(BFMW)纳入一种细节添加剂,因为它对水泥砂浆的机械和屏蔽性能的影响。制备了几种砂浆混合物,以不同比例的BFMW为0%至30%,作为细胞骨料替代。水泥砂浆混合物的密度,压缩和拉伸强度以及伽马射线辐射屏蔽。结果表明,包含25%BFMW的砂浆混合物达到最高的抗压强度值,超过50 MPa。通过实验测试和使用Microshield软件包计算的计算测量伽马射线衰减的评估,结果表明,使用BFMW聚集体可将衰减系数增加约20%。这些发现表明,矿物废物可以适当用作部分替换骨料,以改善辐射屏蔽以及降低砂浆和混凝土成本。2016 Elsevier Ltd.保留所有权利。
设计以植物为导向的执行器为创建新型设备的机会提供了一个机会,例如在物理结构中体现这些品质的机器人。生长和衰减的植物杆型植物构成了生物体固有的不可预测和逐渐转换,并提出了一种直接性,响应,控制,准确性和耐用性的设计原理的替代方法。为了探讨这一点,我们为植物驱动的机器人执行器提供了原始设计空间。概念证明原型幻觉如何将诸如缓慢变化,缓慢运动,衰减和破坏之类的概念纳入机器人形式中。我们描述了为机器人构建植物驱动的辅助器所需的设计注意事项,包括有关植物力的机械性能的实验性fndings。最后,我们推测
摘要 量子随机数生成器 (QRNG) 基于对单个量子系统执行的自然随机测量结果。在这里,我们展示了使用具有可调分光比的 Sagnac 干涉仪实现的分支路径光子 QRNG。分光比的微调使我们能够最大化生成的随机数序列的熵,并有效地补偿组件中的公差。通过从衰减的电信激光脉冲产生单光子,并使用市售组件,我们能够直接从原始测量数据生成超过 2 GB 的随机数序列,平均熵为 7.99 位/字节。此外,我们的序列通过了 NIST 和 Dieharder 统计测试套件的随机性测试,从而证明了其随机性。我们的方案展示了一种基于动态调整生成的随机序列均匀性的 QRNG 替代设计,这对于依赖于独立实时测试其性能的现代生成器的构建至关重要。
电气化是我们创建可持续能源系统和减少对化石燃料依赖的最有前途的战略。平衡的电网系统是电气化社会的支柱,它分配来自可再生能源的电力并为我们的车辆、工业和电子产品提供动力。锂离子电池是固定和移动储能的关键技术,应仔细考虑其最佳利用。各种退化机制都会导致锂离子电池性能下降。因此,电池研究的一个关键领域是检测和表征这些机制并预测它们对电池性能的影响。本文研究了电池在电池储能系统 (BESS) 应用中的性能。研究问题涵盖不同类型的电网平衡服务、评估电池健康状态 (SOH) 的方法以及导致容量和功率衰减的机制。结合基于物理的建模和电化学技术,并将结果结合起来以更好地理解退化及其后果。
在接种疫苗接种后一到两周内,有一个理论上的潜在潜在风险是将活衰减的流感病毒传播到非常严重的免疫抑制接触(例如,需要隔离的骨髓移植患者)一到两周。NIAC指南建议:“与需要隔离的严重免疫抑制者一起生活的孩子(例如,造血干细胞移植后)不应接受四价活性流感(LAIV)鼻疫苗”。这是预防措施。由于疫苗病毒是冷的,因此无法在体温下有效复制。在美国已经服用了数百万剂量的LAIV,并且在无意中暴露于疫苗病毒的免疫功能低下的接触中,从未观察到过严重疾病。除了通过治疗或疾病免疫功能低下的人生活的任何儿童,除非该人必须住在隔离室中,否则可能使用LAIV疫苗。
测试表明,碳钢的塑性扭转是能量吸收的极其有效的机制。发现,在3%至12%的塑料菌株下,每个周期(LU -50 x 1 0“每周循环N/m 2)的能量耗散在2000-7500 lb in/in^ in^ in^中,其寿命范围在1000至100个周期范围内。还表明,扭转中的故障方式是一种极为有利的,可用于吸收能量的设备,因为它可以逐渐衰减的形式。所研究的其他两个ME chanism效率较低,比扭转效率较低,并且每个周期的能力为500-2000 lb(3。< /div>)5-1^ x 1 0“每个周期N/m 2)和约200至20个周期的寿命。尽管如此,它们比扭转的ME Chanism更加紧凑,并且这些设备在一个结构中可能是1个驱动器,在该结构中,它们易于在攻击后易于替换。
摘要每年,生物碳泵(BCP)将大量碳从海面传输到内部。这种转移的效率在地理上有所不同,是大气 - 海洋二氧化碳平衡的关键决定因素。传统上,注意力集中在解释这种转移效率(TE)中的地理变化,以便理解它,这种方法导致了矛盾的结果。在这里,我们结合了观测值和建模,以表明TE的空间变异性可以用碳通量衰减的季节性变异来解释。我们还表明,由于采样日期和持续时间的差异,季节性可以解释已知的全球TE全球估计值之间的对比。我们的结果表明,在TE中年度平族模式的机械解释中谨慎,并证明可能需要季节性和空间解决的数据集和模型来生成对BCP的准确评估。