摘要:昼夜节律影响地球上的所有生物。中央和外围细胞时钟具有振荡并被环境线索所吸引的能力,从而使生物体可以预测并同步其生理过程和行为,从而反复发生每日环境改变。在现代生活中的昼夜节律破坏,例如通过轮班工作和喷气旅行,导致中央和外围钟的异议,是心血管疾病和代谢综合征的独立危险因素。衰老也与衰减的细胞节奏性有关。在这里,我们总结了将心血管健康与昼夜节律联系起来的临床观察结果。此外,我们讨论了实验模型的最新进展,以了解心血管系统中各种生理过程的时钟机械。一起,这些研究为将我们对昼夜节律生物学知识应用于心血管疾病的新疗法的发展奠定了基础。关键字:昼夜节律,昼夜变化,心血管
我们研究了连续奇偶校验测量的量子误差校正,以用三量码纠正比率误差。连续监视错误带来了连续信息流的好处,这有助于实时被动错误跟踪。它从基于标准的门的方法中降低了开销,该方法定期纠缠并测量其他Ancilla Qubit。但是,连续平价测量的嘈杂模拟信号要求更复杂的信号处理来准确解释综合征。我们分析了几种实践过滤方法的性能,以进行连续误差纠正,并证明它们是基于标准Ancilla的方法的可行替代方案。作为一种最佳过滤器,我们讨论了一种不正常的(线性)贝叶斯过滤器,并且与Mabuchi引入的相关WONHAHHAMELTER相比,具有改进的构成效率[New J. Phys。11,105044(2009)]。 我们将这种相当的连续滤波器与最简单的周期性盒车平衡和阈值过滤器的两个实际变化进行了比较,以低延迟电路为目标实时硬件实现。 作为变体,我们引入了一个非马克维亚“半盒车”过滤器和带有可调节阈值的马尔可夫过滤器;这些滤波器消除了盒装填充中的主要误差源,并与最佳过滤器相比有利。 对于每个滤波器,我们在平均值中得出衰减的分析结果,并通过数值模拟对其进行验证。11,105044(2009)]。我们将这种相当的连续滤波器与最简单的周期性盒车平衡和阈值过滤器的两个实际变化进行了比较,以低延迟电路为目标实时硬件实现。作为变体,我们引入了一个非马克维亚“半盒车”过滤器和带有可调节阈值的马尔可夫过滤器;这些滤波器消除了盒装填充中的主要误差源,并与最佳过滤器相比有利。对于每个滤波器,我们在平均值中得出衰减的分析结果,并通过数值模拟对其进行验证。
摘要的先天免疫力(IBD)构成了一组异质性的遗传性疾病,影响免疫系统不同组成部分的数量和/或功能,这些疾病的数量和/或功能易于增加感染的率和严重程度,自身免疫性疾病,自发性疾病,过敏症,自我 - 自我 - 自我 - 自我 - 症和偏症。 div>在这些患者中,灭活疫苗的免疫通常是安全的,但在某些EII组中可能不会有效,而不会产生所需的保护作用。 div>衰减的活体(病毒和细菌)疫苗的应用可能导致与免疫相关的疾病发展,发病率高和死亡率,因此它以前值得咨询专家。 div>本报告总结了阿根廷儿科学会免疫学工作组的结论,涉及IBD患者的疫苗接种及其同居,在药理免疫抑制和造血前体细胞受体下的患者中。 div>
我们在无限量子量子系统的无限时间和时间订购的相关器的无限时间平均值周围的时间波动方面提供了界限。对于物理初始状态,我们的边界预测了时间波动随系统大小的函数的指数衰减。我们在数值上验证了混乱和相互作用的可集成自旋1 /2链的预测,该链满足了我们边界的假设。另一方面,我们从分析和数字上显示的是,对于XX模型,这是一个具有间隙脱合性的非互动系统,temporal波动衰减的多项式衰减具有多种多态的系统大小,用于运算符的系统大小,该操作员位于费米昂表示中,并且在非局部op-ertors的系统大小中呈指数下降。我们的结果表明,相关器的长期时间波动的衰减不能用作混乱的可靠度量或缺乏混乱的指标。
摘要:以原始形式和含有碳纳米管(CNT)或Fe 2 O 3纳米颗粒(NP)(NPS)的超高分子量聚乙烯(UHMWPE)的薄薄片。CNT和Fe 2 O 3 NP的重量百分比在0.01%至1%之间。通过传输和扫描电子显微镜以及通过能量分散X射线光谱分析(EDS)来确认UHMWPE中CNT和Fe 2 O 3 NP的存在。使用衰减的总反应傅立叶转化红外(ATR-FTIR)光谱和UV-VIS吸收光谱光谱光谱光谱光谱法研究了嵌入式纳米结构对UHMWPE样品的影响。ATR-FTIR光谱显示了UHMWPE,CNTS和Fe 2 O 3的特征。关于光学性能,无论嵌入纳米结构的类型如何,都观察到光吸收的增加。从光吸收光谱中确定允许的直接光能差距值:在这两种情况下,它都随着CNT或Fe 2 O 3 NP浓度的增加而降低。将提出和讨论获得的结果。
我们研究了与指数α具有长距离铁磁相互作用衰减的量子图链的相图和临界特性,这是针对当前捕获的离子实验的直接利益的指数α的。使用大规模路径积分蒙特卡洛模拟,我们研究了地面状态和非零温度状态。我们确定铁磁相的相边界,并获得铁磁 - 磁磁过渡温度的准确估计。我们进一步确定了相应过渡的关键指数。我们的结果与某些关键指数中的相互作用指数α> 1的现有预测一致。我们还谈到了难以捉摸的α<1,我们发现地面状态和非零温度转变的通用类别与α= 0的平均值限制一致。我们的工作不仅有助于理解远程相互作用量子模型的平衡特性,而且对于解决基本的动力学方面,例如有关此类模型中的热量问题的问题也很重要。
摘要:由于空间粒子的吸收和散射,卫星信号在传播过程中的质量会下降。对于高信息速率卫星技术,这种质量下降会严重影响接收到的信息。这种质量下降还取决于链路和大气损耗。雨水和云对 10 GHz 以上频率的信号衰减有重大影响。在雨水和凝结云层期间,低仰角传输会增加有效路径长度并导致接收信号电平下降。频率 f 和仰角 θ 等发射信号参数的变化会显著影响大气损伤。本文研究了在 10-50 GHz 频率范围内较低仰角下自由空间损耗、雨水衰减和云衰减的影响。链路计算方法用于确定自由空间损耗。ITU-R Rec. P.837-4 和 ITU-R Rec. P.676-11 分别用于计算雨水和云衰减。使用 MATLAB 软件绘制并制表这三种损耗的结果。
抽象量化学习算法的输出与目标的目标是机器学习的重要任务。然而,在量子设置中,常用距离指标的损失景观通常会产生不良结果,例如局部最小值差和指数衰减的梯度。为了克服这些障碍,我们在这里考虑最近提出的量子地球移动器(EM)或Wasserstein-1距离是经典EM距离的量子类似物。我们表明,量子EM距离具有独特的特性,在其他常用的量子距离指标中未发现,这使量子学习更加稳定和有效。我们提出了一个量子剂量生成对抗网络(QWGAN),该网络利用量子EM距离,并提供了对量子数据进行学习的有效手段。我们提供了Qwgan能够学习一组量子数据的示例,仅资源在量子数中多项式。
根据相对论,理想时钟的读数被解释为沿着它在时空中的经典轨迹所经过的固有时。相反,量子理论允许将许多同时的轨迹与一个量子钟关联起来,每个轨迹都有适当的权重。在这里,我们研究叠加原理如何影响简单时钟(一个衰减的两能级原子)观察到的引力时间膨胀。将这样的原子置于位置叠加中使我们能够分析量子贡献对自发辐射中经典时间膨胀的表现。特别地,我们表明,在引力场中分离波包的相干叠加中制备的原子的发射率不同于这些波包的经典混合中原子的发射率,这引起了量子引力时间膨胀效应。我们证明了这种非经典效应也表现为原子内部能量的分数频率偏移,该偏移在当前原子钟的分辨率范围内。此外,我们还展示了空间相干性对原子发射光谱的影响。