A A = 地面实际 A&A = 授权和进近 A&AEE = 飞机和武器实验建立 A&AS = 机场和航空服务 A&D = 到达和离开 A&I = 架构和完整性 A&R = 分析和研究(NATS);原为 R&DG A-ENPRM = 先进 – 欧洲空中航行安全组织拟议规则制定通知 A-Gear = 阻拦装置 A-RIOT = 异步远程输入输出终端 A-S = 反欺骗 A-A = 空对空 A/C = 航空公司(美国) A/C = 飞机 A/D = 机场 AA = 核准机构 AA = 主动寻址 AA = 行政助理 AA = 空对空 AA = 防空 AA = 航空管理局 AAA = 机场和航路辅助设备 AAA = 阿姆斯特丹先进空中交通管制系统 AAA = 防空炮兵 AAAA = 美国陆军航空协会 AAAD = 全兵种防空(英国) AAAM = 先进空对空导弹 AAAS = 美国科学促进会 AAAVTAG = 沃尔沃航空自主辅助系统 通用航空交通 AAC = 航空公司行政控制 AAC = 航空行政通信 AAC = Alpha衰减系数 AAC = 阿拉斯加空军司令部 AAC = 陆军航空兵团 AAAC = 机场协会协调委员会 AAAC = 陆军空降指挥与控制 (美国陆军) AACE = 机场进近控制元件
摘要:在这项工作中,我们研究了Li 2 O -SB 2 O 3 -PBO -GEO 2 -CR 2 -CR 2 O 3玻璃系统的辐射屏蔽特征,不同能量的玻璃系统范围为0.284至1.33 MeV。发芽玻璃的最大线性衰减系数(LAC)为0.680-0.707 cm-1,报告为0.284 MeV,而最小lac在1.33 MEV处观察到,并且在0.159-0.159-0.159-0.166 cm--1-1.66 cm-1中变化。由于添加了Cr 2 O 3,因此发现了这些眼镜的lac增加,并且编码为C5(Cr 2 O 3的0.5 mol%)的眼镜具有最高的lac。研究了带有不同含量的Cr 2 O 3的选定玻璃的一半值层(HVL),结果表明,HVL在低能量时很小,在0.284 MEV时为0.98-1.02 cm,从1.328-1.383 cm处于0.347 MEV。在1.33 MeV处观察到最大HVL,C5的最大HVL等于4.175 cm,C1观察到4.175 cm。报告了目前眼镜的第十个值层(TVL)值,结果表明,随着密度从3.07增加到3.2 g/cm 3,TVL从3.388降低到3.256 cm,在0.284 MEV时从13.413 cm下降到13.413 cm,在1.173 mev处降低至12.868 cm。
X 射线计算机断层扫描 (CT) 旨在通过使用定向 X 射线穿过人体内部切片来生成二维质量密度 (或 X 射线衰减系数) 图,从而从这些切片的 2D 图集合中构建 3D CT 图像。由于 CT 扫描为我们提供了身体内部结构,没有任何切割或物理损伤,因此它在我们的现代医疗应用中是不可或缺的。然而,由于 X 射线涉及电离辐射,它对生物体是危险的,它在医疗应用中带来了 ALARA(尽可能低)原则,强调尽可能高质量 CT 图像(具有尽可能高的分辨率),尽可能少地使用被扫描身体的 X 射线曝光。这项具有挑战性的任务以及对这些 CT 图像的正确解释,以得出正确的诊断和治疗计划,在 X 射线 CT 扫描的发展过程中,设计了各种扇形几何形状、扫描样式和先进的图像重建技术。我们可以看到,自 20 世纪 70 年代初首次发现以来,X 射线 CT 扫描已经发生了巨大的变化,并且随着人工智能 (AI) 和深度学习 (DL) 在我们现代 CT 中的应用,这种变化仍在继续,并取得了令人鼓舞的成功成果。在这项工作中,我们介绍了现代 X 射线 CT 的教学研究,并回顾了有关 i 扫描几何、ii 重建技术和 iii-AI&DL 应用的相关文献,希望能够为该领域的学者和研究人员提供快速参考。
摘要:超声(US)是骨骼肌分析的重要成像工具。我们的优点包括护理点的访问,实时成像,成本效益和电离辐射的缺失。但是,我们可以高度依赖运算符和/或美国系统,并且在图像形成中丢弃了原始超声数据数据的可能有用的信息,以供常规定性美国进行图像形成。定量超声(QUS)方法提供了原始或后处理数据的分析,揭示了有关正常组织结构和疾病状况的其他信息。可以在肌肉上使用四个QUS类别,并且很重要。首先,从B模式图像得出的定量数据可以帮助确定肌肉组织的宏观结构解剖结构和微观结构形态。第二,美国弹性图可以通过菌株弹性学或剪切波弹性图(SWE)提供有关肌肉弹性或刚度的信息。菌株弹性学测量通过在检查组织的B模式图像中使用可检测的斑点跟踪组织位移引起的诱导组织应变。swe测量通过组织中传播的诱导剪切波的速度以估计组织弹性。这些剪切波可以使用外部机械振动或内部“推动脉冲”超声刺激产生。第三,原始的射频信号分析提供了基本组织参数的估计,例如声音速度,衰减系数和反向散射系数,与有关肌肉组织显微组织和组成的信息相对应。最后,包络统计分析应用各种概率分布来估计散射器的数量密度并量化与不连贯的信号相干,从而提供了有关肌肉组织的微观结构特性的信息。本综述将检查这些QUS技术,对骨骼肌的Q评估结果以及骨骼肌肉分析中QUS的优势和局限性的评估。
目的:基于肝脂质定量的衰减系数(AC),肝纤维化阶段对定量超声的影响是有争议的。这项研究的目的是确定如何根据超声引导的衰减参数根据肝脂肪变性的等级(使用磁共振成像(MRI)质子密度脂肪分数(MRI衍生的PDFF),根据超声引导的衰减参数(MRI),如何根据超声引导的衰减参数(MRI-PDFF)影响AC。方法:在2020年2月至2021年4月之间,有982例慢性肝病患者接受了AC和MRI衍生的PDFF测量以及MR弹性摄影。多重回归用于研究AC是否受肝僵硬程度的影响。结果:AC随着344例没有肝脂肪变性的患者的进展,AC随着肝僵硬的发展而增加(P = 0.009)。在多变量分析中,在没有肝脂肪变性的患者中,AC与皮肤胶囊距离(p <0.001),MR弹性学值(P = 0.037)和MRI衍生PDFF(P <0.001)呈正相关。在982例患者中有52名(5%)中,AC和MRI-sured PDFF之间的相关性落在回归线斜率的95%置信区间之外。MRI衍生PDFF的患者低于其AC(n = 36)的纤维化4分数,白蛋白 - 二氟脂蛋白评分和MR弹性摄影值高于MRI衍生PDFF的患者大于其AC的患者(n = 16; P = 0.018,p = 0.018,p = 0.001,p = 0.001,p = 0.011)。结论:AC仅在没有肝脂肪变性的患者中受肝纤维化(MR弹性学值≥6.7kPa)的影响(MRI衍生PDFF <5.2%)。在患有晚期肝纤维化患者中应谨慎解释这些值。
数字化和数值信号处理,gabriele pasquali -12 h(2 cfu),4月 - 六月gabriele.pasquali@unifi.infi.unifi.t课程是对数字化和信号处理的介绍,并应用于物理学中的传感器/检测器。在简要介绍了模数转换器的原理和特征之后,我们处理采样理论和信号重建。其他主题是:具有LTI(线性时间不变)系统的数字信号处理,离散的傅立叶变换,Z变换,自定义处理系统的设计。可以适应学生的特定需求。法医学科学的核分析技术,Massimo Chiari-12 h(2 cfu),1月至1月,chiari@fi.infn.it核分析技术(NAT),基于加速器的技术,离子光束分析(IBA),包括基本和分子分析和中间人群体分析(IBA),用于基于元素的质谱(IBA)。 (NAA),在核反应堆中进行元素分析。在本课程中,我们将审查NATS,并将申请提交大量法医问题,例如分析滥用药物,食品欺诈,伪造药物,枪击残留物,玻璃碎片,艺术品对象和文档的伪造以及人类材料。成像CT的新型前沿,Mara Bruzzi和Adriana Taddeucci -12 H(2 CFU),4月至6月mara.bruzzi@unifi.it,adriana.triana.taddeucci@unifi@unifi.itcompocted.itcompocted.itcompocted.itcomported.itcompoiced.itcompoich.itcompoich.itcompoich.it computed somography(CT)对医学实践产生了深远的影响。通过加深对解剖学,生理和病理学的了解,CT促进了疾病的检测和管理。CT的最新进展涉及光谱成像技术的发展和人工智能的使用(深度学习,DL)。光子计数CT(PC-CT)可以测量每个单独的光子与检测器相互作用的能量,从而可以鉴定单个材料(例如碘化的血液,软组织,骨骼)。在质子治疗中,通常通过适当的转换和校准系数从翻译光子衰减系数(Hounsfield的单位-HU)的X-CT图像中提取相对停止功率(RSP)图。质子CT(PCT)是一种新兴技术,可直接估算RSPS,从而改善了质子治疗的治疗计划和验证。本课程将在光子CT和Proton CT技术中介绍并讨论最先进和前沿研究。医学物理探测器,cinzia talamonti -12 h(2 cfu),4月至6月cinzia.talamonti@unifi.it.it介绍了现代方法,以检测医学物理学中的颗粒。将描述“剂量法”和“剂量计”的概念以及剂量测量的解释。布拉格灰腔理论和电离室是剂量测定法的基石。将讨论钻石,有机闪光灯,无定形硅,闪烁纤维和被动剂量计的尖端探测器,这些探测器将在临床绝对和相对剂量测定法中满足新需求。最终将引入微观测定法的概念。新的国际测量和实践守则包括在小田间剂量法中的电离室和“固态室”(硅,钻石)之间的比较。
56.标称 500 BPD 注入井中的五个流量剖析拖拽 ............................................................................................................................................. 86 57.标称 500 BPD 注入井中通过段塞跟踪检测管后流量 ............................................................................................................................. 88 58.720 BPD 注入井中通过段塞跟踪方法检查封隔器泄漏 ............................................................................................................. 89 59.已减去伪碱基活度的校正运行 #I ............................................................................................. 90 60.900 BPD 注入井在关闭一小时后进行交叉流检查 ............................................................................................. 91 61.图 60 中注入井中封隔器泄漏的静态速度射击检查标称速率为 900 BPD ...................................................................................... 93 62.适当缩放的静态速度射击测试,用于检测封隔器完整性,环空速度分辨率为 0.35 英尺/分钟泄漏率 ...................................................................................... 94 63.图 58 中封隔器下方滞留段塞的假设速度射击响应 ............................................................................................................................. 95 64.图 32 井的通道检查,井中盐水注入速率为 400 BPD ............................................................................................. 96 65.在 5,820-25 英尺处的穿孔下方通过速度射击方法进行通道检查,井中注入速率为 600 BPD ............................................................................................. 97 66.与图 65 速度射击相同的井的段塞跟踪调查,注入速率相同600 BPD ................................................................................................ 99 67.注入 536 桶水并关闭井后对井进行的温度测量 ................................................................................................................................ 100 68.通道检查,井注 2 BBL/min 的速度测量。......................... IOI 69.新井的关闭温度测量 ............................................................................................................. 103 70.将 40 BBL 泥浆泵入油管之前和之后的温度测量 ............................................................................................. 103 71.图 70 中的三个速度测量 .............................................................................................I 04 72.图 71 上速度射击后的接箍日志运行 ...................................................................................... 105 73.油管泄漏上方的速度射击@ 1 BPM 速率 ...................................................................................... 106-107 74.以 950 BPD 注入井的段塞跟踪调查 ............................................................................. 109 75.图 74 井的温度调查 ............................................................................................. 110 76.图 74 井的关井交叉流检查 ............................................................................................. 11 l 77.单独显示的带有压电检测元件的噪声(声音)测井探头 ............................................................................................................................. 114 78.噪声日志格式说明典型的环境或死井水平 ................................................................................................................................ 117 79.管道后方 20 BPD 水流进入已耗竭 250 PSI 的气区的噪声日志格式 ............................................................................................................. 118 80.两种电缆尺寸的测井电缆衰减系数 ............................................................................................. 120 81.水中声源的声音传播 ............................................................................................................. 122 82.管道压力为 8 I 5 PSIG 的封闭油井的噪声日志 ............................................................................. 124 83.井喷失控附近充满泥浆的裸眼井的噪声日志 ............................................................................................................. 125 84.与流动路径相关的噪声日志特征 ............................................................................................. 126 85.正在钻井的 9 5/8 英寸套管后方 500 桶/天高压水流的噪声记录 ............................................................................................................. 127 86.封闭井的噪声记录,管道后方水流的估计速率为 5,000 桶/天 ............................................................................................................. 128
摘要:铅提供有效的屏蔽层抗辐射,因为铅具有高密度和原子数,从而使其有效吸收X射线光子。铅围裙是用于保护患者免受不必要的暴露和放射学人员免受职业暴露的辐射保护服装。除了良好的辐射保护铅被认为是重金属,由这种材料制成的围裙可能繁琐而累人,尤其是长时间。也是铅是剧毒物质,如果不正确处理和处置,则带来环境和健康风险。研究人员正在积极探索辐射屏蔽围裙中铅的替代品,其材料具有钨,二硫酸钡,硫酸钡和某些聚合物复合材料以及某些由于其可比的辐射屏蔽效应而出现的潜在替代品,而毒性的毒性比铅低于铅。铅替代复合材料的三种组合W-SN-BA-PVC,W-SN-CD-PVC,Sn-GD-W-PVC在宽光束几何学的诊断放射学的能量范围内进行了研究。与含有复合材料的标准铅相比,在30-60 KEV和结果之间评估了这些材料在辐射衰减方面的辐射屏蔽效应。没有铅替代复合材料可在低Energie 30 KEV中提供更好的保护。复合W-SN-BA-PVC可提供相当大的衰减,但始终低于标准。复合材料W-SN-CD-PVC在40-60 KEV内显示出更好的衰减,而SN-GD-W-PVC在60 KEV时显示出更好的衰减。光电效应绝大多数主要主导了该能量范围内的能量转移和吸收。因此,铅替代复合屏蔽层可以有效地屏蔽40至60 KEV范围内的X射线能量。关键字:屏蔽效率,辐射屏蔽,铅的替代品,复合材料,蒙特卡洛模拟1。引入辐射屏蔽服装或铅围裙通常用于保护医疗患者和工人在医院,诊所和牙科办公室的诊断成像期间暴露于直接和继发辐射。使用类似的材料用于其他应用,例如用于保护在机场扫描仪或类似设备附近工作人员的行李扫描仪。在大多数这些环境中,典型的峰X射线能量范围为60至120 kVp,对应于大约35-60 keV的平均能量[1]。辐射屏蔽的有效性随成分材料的光电衰减系数,服装的厚度和辐射的能量谱[1]而有很大变化。传统上由铅制成的围裙已用于诊断放射学和介入试验中,因为它们在降低患者和操作员的辐射剂量方面具有非凡的效率。没有这些盾牌,直接接触电离辐射可能会导致健康组织中的生物学损害。尽管铅盾牌对减轻辐射剂量的有益,但对患者和辐射人员进行了疑问,但对长时间使用的安全性提出了疑问。证明了使用铅围裙的使用与背痛的发展之间的关系[3]。最近的一项研究由于铅的密度,这些盾牌是如此重,因此其携带是一项负担重大的任务,尤其是在长期过程中,例如在介入的血管造影中,如Moore等人。此外,由于铅是有毒元素,因此长期使用可能会危害用户的健康[4]。最近,研究人员对寻找重量较小且可能使用相同衰减的替代性无毒材料的兴趣增加,而不是铅来克服其质量和毒性问题[5]。
摘要:光谱计算机断层扫描标志着医学成像的革命性进步,提供了组织表征和诊断准确性的显着改善。使用双能X射线技术,该方法根据其原子数和电子密度区分材料。频谱成像可从多个能级中获取数据,从而更详细地描绘组织结构,并增强对各种病理状况的识别和理解。与传统成像不同的是依赖于单个能级的传统成像,该方法产生的图像具有多样的对比度,从而可以区分标准扫描中可能看起来相似的组织。本评论探讨了有关光谱计算机断层扫描的发表研究和研究的各种集合,利用了同行评审的期刊和学术教科书,专门研究双能量成像系统,探测器创新和临床应用。获得了所获得的见解,以提供有关此成像技术的基本原理,技术进步和临床实用性的全面概述。强大的搜索策略和明确定义的纳入标准可确保选择高质量的相关资源,以支持本综述中得出的结论。本文旨在对光谱计算机断层扫描的基本原理,技术创新和临床应用进行全面概述。这种能力对于检测和分析各种病理问题(包括肿瘤,血管异常和退化性疾病)特别有价值。2。检测器技术的最新进步显着提高了光谱成像系统的灵敏度和分辨率。这些改进会导致更清晰,更精确的图像,并减少噪声。高级图像重建算法的结合具有进一步的图像质量,从而更好地可视化复杂的解剖学特征,对于准确的诊断和有效的治疗计划至关重要。此外,增强的软件功能现在可以详细介绍组织特性的定量分析,例如衰减系数,有助于评估组织组成并区分良性和恶性生长。光谱计算机断层扫描中的进步代表了医学成像中的关键演变,从而显着提高了诊断评估的准确性和细节。利用双能系统和创新技术,可以实现先进的组织表征,促进知情的临床决策。其广泛的临床应用突出了其在各种专业中的重要性,从而提高了有效诊断和管理各种疾病的能力。随着研究和技术的继续发展,它将在实现更好的健康成果中发挥越来越重要的作用。关键字:计算机断层扫描,光谱成像,组织表征,双能X射线系统1。引言自从五十年前作为一种非侵入性诊断方法首次亮相以来,计算机断层扫描(CT)经历了重大发展。现代CT研究的关键领域是光谱成像,它利用多色X射线的能量信息来增强组织表征。虽然Spectral CT源于早期CT技术,但由于技术的改进,其临床采用率在过去的十年中已大大增长,这使其实际上更可行(Krauss,B。,2015年)。ct数是由X射线的衰减确定的,X射线受材料的质量密度和有效原子数的影响。光谱CT使用数学技术分别计算质量密度和有效原子数,从而收集多个能级的数据。双能计算机断层扫描(DECT)的出现具有显着高级的CT技术,可以解决组织表征的先前局限性,而新的光子计数检测系统为多能成像的进一步改善提供了潜力(Gutjahr,R。,R。,2016年)。本文的目的是对光谱计算机断层扫描的核心原理,技术进步和临床应用进行深入探索。方法本综述研究了一系列关于光谱计算机断层扫描的已发表的研究和研究,这些研究来自同行评审的期刊和学术教科书,这些期刊和学术教科书着眼于双能CT系统,探测器技术,