获得认证后,ABNM 文凭持有者将进行一系列临床实践活动,通常不涵盖 NM 的整个范围。因此,ABNM 根据我们活跃的文凭持有者实践档案(来自 www.abnm.org 上的文凭持有者年度更新)构建 CL(和重新认证考试)。ABNM 考试蓝图根据文凭持有者的档案分配项目,并定期对其进行审查/更新。2018-2020 年的数据显示,35% 使用一般单光子成像,39% 使用正电子发射断层扫描,17% 进行心血管成像,7% 提供放射性药物治疗。叠加这些类别,9% 的文凭持有者将儿科患者纳入他们的实践中。当前的 ABNM CL 蓝图包括 64% 的一般 NM 和 PET 成像(重点是肿瘤学应用)、16% 的心血管成像、10% 的 NM 治疗和 10% 的“核心”概念(监管、患者安全、成像物理和放射性核素/衰变特性)。
铽具有四种临床上可用于核医学的放射性核素:铽-149、铽-152、铽-155 和铽-161。它们相同的化学性质使得合成具有相同药代动力学特征的放射性药物成为可能,而它们独特的衰变特性使它们在成像和治疗应用中都很有价值。特别是,铽-152 和铽-155 分别是正电子发射断层扫描 (PET) 和单光子发射计算机断层扫描 (SPECT) 成像的有用候选物;而铽-149 和铽-161 分别用于 α - 和 β - -/俄歇电子疗法。这种独特的特性使铽族成为治疗诊断学“配对”原理的理想选择。本综述讨论了铽基放射性药物的优势和挑战,涵盖了从放射性核素生产到床边给药的整个过程。文中详细阐述了铽的基本特性、四种有趣的放射性核素的生产路线,并概述了可用的双功能螯合剂。最后,我们讨论了临床前和临床研究以及核医学领域这一有希望的发展前景。
摘要:靶向放射性核素治疗 (TRT) 的概念是准确有效地将辐射传送到播散性癌症病变,同时最大限度地减少对健康组织和器官的损害。成功开发用于 TRT 的新型放射性药物的关键方面是:i) 识别和表征癌细胞上表达的合适靶点;ii) 选择对癌细胞相关靶点表现出高亲和力和选择性的化学或生物分子;iii) 选择衰变特性与靶向分子特性和临床目的相符的放射性核素。瑞士保罗谢勒研究所的放射性药物科学中心 (CRS) 享有优越的地理位置,靠近独特的放射性核素生产基础设施(高能加速器和中子源),并可使用 C/B 型实验室,包括临床前、核成像设备和瑞士医药认证实验室,用于制备供人类使用的药物样品。这些有利条件允许生产非标准放射性核素,探索其生化和药理学特征以及对肿瘤治疗和诊断的影响,同时研究和表征新的靶向结构并优化这些方面以进行放射性药物的转化研究。通过与瑞士各临床合作伙伴的密切合作,最有前途的候选药物被转化为临床用于“首次人体”研究。本文通过介绍一些选定的项目,概述了 CRS 在 TRT 领域的研究活动。