如今,空气和噪音污染的持续增加已成为一种长期的滋扰,同时也是一个令人担忧的问题。在本期刊中,我们将提供一个系统来测量和监控环境参数,并在空气质量和噪音水平超过安全水平时发出警报。该系统使用必要的传感器来检测大气中的气体以及特定区域的噪音水平,并将其传输到微控制器 NodeMCU。现在,通过 Wi-Fi 凭证连接到 Node MCU 的云平台 Blynk 会获取数据并通过与被视为安全水平的值进行比较来处理数据。当每个空气质量和噪音污染变量超过允许水平时,这个基于云的监控应用程序 Blynk 还会提供一个警报系统。它通过向 Android 设备发送电子邮件或消息来通知用户,甚至可以激活蜂鸣器作为警报。这些数据被连续传输,并被存储以供进一步解释。这种基于云的污染监测系统是最经济、最可靠、最具成本效益的,并且可以增强以应对即将到来的挑战。2021 Elsevier Ltd. 保留所有权利。由第二届国际创新技术和科学会议 (iCITES 2020) 的科学委员会负责选择和同行评审。
奇异果藤蔓衰落综合征(KVD)的特征是严重的根系障碍,导致冠层不可逆地枯萎。植物通常会因第一个地上症状的出现而迅速崩溃,即使在接下来的季节也没有恢复。自2012年首次爆发以来,综合征在意大利的不同领域(意大利的不同地区)一直对奇异果产量产生负面影响。迄今为止,尚未找到一个独特的,常见的因果因素,综合征称为多因素。在本文中,我们研究了与在三种不同的地下矩阵/隔室(土壤,根际和根)中开发KVD相关的整个生物群落(真菌,细菌和Oomycetes)。采样。要解决综合征的多因素性质,并研究了非生物因素在塑造这些群落中的潜在作用,还对土壤进行了物理化学分析。这项研究调查了组成微生物组以及生物和非生物因素之间的分类群体之间的关联。营养不良被认为是塑造KVD微生物群落的驾驶事件。从这项研究中获得的结果突出了卵属植物属的作用,这主要导致了卵菌的组成,尽管它也存在于健康的基质中。与KVD相关的根际群落是由不植物过程驱动的。细菌和真菌群落都导致属的丰富度高,并且与采样位点和基质高度相关,并强调了多个位置在地理上和空间上采样的重要性。此外,对患病的根际对关联网络的分析表明,存在潜在的跨王朝竞争,这是腐生,卵形和细菌之间植物来源碳的潜在竞争。
能源方面:我们支持进一步实施电力市场设计改革,通过整合电力购买协议和差价合约等脱碳机制来稳定能源成本,并为投资者提供市场可见性。我们还呼吁加强欧盟排放交易体系 (ETS) 下的间接成本补偿计划,促进灵活性服务,通过投资能源基础设施(包括可再生能源生产和网络)深化能源市场一体化。 可持续出行方面:鉴于欧盟层面的最新发展,我们支持将汽车和货车法规的二氧化碳排放标准修订时间从 2026 年提前到 2025 年,并向欧洲议会和理事会提交第一份进展报告。 排放方面:我们支持审查 ETS 和碳边境调整机制 (CBAM),使其充分发挥作用,并防止依赖进口原材料的行业产生不当的生产成本和负担。如果 CBAM 被证明无效,免费配额的逐步淘汰轨迹将不得不推迟。
I. 引言 随着微电子技术和计算能力的不断进步,新一代无线技术的涌现使几代人之前看似未来主义的用例成为可能 [1]。然而,在这些新技术成为商业现实之前,需要彻底评估和评估它们的性能,并且必须充分了解与其性能扩展规律和操作限制相关的见解。深入研究通信理论基础,不可否认的是,渐近分析几十年来一直是评估系统性能的非常有用的工具 [2]。里程碑式的工作 [3] 为无线通信系统的渐近性能分析奠定了基础。在与信噪比 (SNR) 的概率密度函数 (PDF) 的平滑度相关的合理温和条件下,当平均 SNR γ 足够大时,错误概率度量可以表示为 P op ≈ α ( γ th /γ ) b ,其中 γ th 是给定性能所需的阈值 SNR 值。编码增益或功率偏移(由 α 捕获)和分集阶(DO,由 b 捕获)的概念在无线文献中无处不在,作为表征性能缩放定律的一种方式:通过将平均 SNR 增加一定量,我们可以获得多少性能提升?直到今天,Wang 和 Giannakis 的幂律
∗弗兰克:芝加哥大学(eyalfrank@uchicago.edu)。sudarshan:沃里克大学(anant.sudarshan@warwick.ac.uk)。我们感谢Rema Hanna,Michael Greenstone,Amir Jina和Claire Palandri提供了数据访问。我们感谢芝加哥大学塔塔发展中心和贝克尔·弗里德曼学院提供的资金来支持这项工作。We thank Ben Balmford, Chris Bowden, Robin Burgess, Rhys Green, Ryan Kellogg, Koichiro Ito, John Janmaat, Charles Taylor, and Wen Wang, as well as the seminar and conference participants at the Indian Statis- tical Institute, BREN School at UC Santa Barbara, the LSE Workshop in Environmental Economics, the Department of Zoology at the University of Cambridge, the Environment Week at LSE, the NBER Energy and Environmental Economics spring meeting, Canadian Resource and Environmental Economics Association conference, the Heartland confer- ence, the Southern Economic Association conference, the Environment, Pollution, and Health AERE ASSA session, the Ecology and Evolution Group at Stanford University, the Rosenkranz Symposium as Stanford University, as well as the Institute for Global Health and Development at Peking University and the Stanford Asia-Pacific Research Center for他们有用的评论。我们感谢Sushant Banjara,Alina Gafanova,Sara Gerstner,Miriam Gold,Animesh Jayant,Simran Karla,Sahila Kudalkar,Sreya Majumder和Yuerong Zhang和Yuerong Zhang提供了出色的研究帮助。所有剩余的错误都是我们自己的。本文中包含和表达的陈述,发现,结论,观点和观点不一定是IQVIA Ltd.或其任何附属或子公司实体的陈述,结论,观点和观点。
引入了由互联网支持的应用程序和由个人(程序员)和公司(当局)构建的生成解决方案的游牧无线设备(例如笔记本电脑、GPS、智能手机),确保大众的意识将成为虚无的宝库。此外,大众的意识正在成为表达这些应用程序商业目的的广告牌,以及接受生成性阐释而不考虑书本、纸张和铅笔教育提供的预定学习行为或原创性。大众被归类为应用程序和被称为生成解决方案的生殖任务是人类认知设计衰落的开始,是存在主义人的灭绝,不再是“我思故我在”,而是“我不思故我在”。范式转变、科学革命[1],或自然选择,适者生存。人类正在逐渐屈服于人工智能、计算机思维,甚至屈服于人类中的少数群体、程序员和当局。
痴呆症患者的数量预计在我们的老龄化社会中将迅速增加,到2050年,全球约1.52亿。这对巨大的医疗,社会和经济影响构成了重大的健康问题[1]。除了最近有前途的lecanemab试验,该试验在阿尔茨海默氏病早期的安慰剂[2]中观察到认知能力下降的降低,目前尚无延迟或反向认知障碍的有效策略。预言认知能力下降的最有前途的策略是针对可修改的危险因素。认知功能障碍机制的主要参与者之一是炎症。慢性低度炎性应激通过细胞介导的免疫力导致氧化环境。这些神经炎症过程包括淀粉样变性,神经元死亡和神经变性。许多研究强调饮食对炎症开始和进展的关键影响。饱和脂肪酸和简单糖过量过量的西方饮食现在是已知的环境风险因素
Loranthus europseus (plant / midgetoe) Biscogniaxia Mediterranea (Fungus) Obolarina Peaches (Fungus), Krawtzewii (Fungus) epicoccum black (fungus) Chaetomium (fungus) Kalmusia variispora (fungus) Petriella dirty (fungus) NeocaMarosporium Obiones (真菌)Sordaria Fimicola(真菌)Paecilomyces Fair(真菌)Phaeoacremonium Tuscanicum(Fungus)Ocean(真菌)Armillaria Mellea(真菌)Dematophora sp。 div> (蘑菇)fusarium sp。 div> (蘑菇)替代属。 div> (蘑菇)植物菌(卵骨)pythium(Oomycetes)Megopis scabrigornis(昆虫)(昆虫)acmaeodera(昆虫)laimaphelenchus(nematode)l. hyrcanus(nematode)l. B. Roseae亚种 div> 玫瑰(细菌)stenotrophomonas一个友好(细菌) div> div>Loranthus europseus (plant / midgetoe) Biscogniaxia Mediterranea (Fungus) Obolarina Peaches (Fungus), Krawtzewii (Fungus) epicoccum black (fungus) Chaetomium (fungus) Kalmusia variispora (fungus) Petriella dirty (fungus) NeocaMarosporium Obiones (真菌)Sordaria Fimicola(真菌)Paecilomyces Fair(真菌)Phaeoacremonium Tuscanicum(Fungus)Ocean(真菌)Armillaria Mellea(真菌)Dematophora sp。 div>(蘑菇)fusarium sp。 div>(蘑菇)替代属。 div>(蘑菇)植物菌(卵骨)pythium(Oomycetes)Megopis scabrigornis(昆虫)(昆虫)acmaeodera(昆虫)laimaphelenchus(nematode)l. hyrcanus(nematode)l. B. Roseae亚种 div>玫瑰(细菌)stenotrophomonas一个友好(细菌) div> div>
1哥布拉临床和生物医学研究所(ICBR)和生理学研究所,科伊布拉大学医学院,3000-548 Coimbra,葡萄牙2,Innovative Biomedicine for Innovative Biomedicine for Innovative Biomedicine and Biotechnology and Biotechnology(CIBB)(CIBB) 3000-061 Coimbra,葡萄牙4葡萄牙科学系,生物科学研究所,Goi o goi Antroper ofGoiás大学,GOI-NIA 74690-900,巴西5医院,科伊布拉大学3004-561 COIMBRA,COIMBRA,COIMBRA,COROLODION OF BIOLION COLLION INSICOL和SECTION INSTIOL INSTIOL INCOLITOL,SECTIONIC马林加,玛格加,玛格加87020-900,巴西7代谢与运动实验室(Lametex),体育锻炼,健康与休闲研究中心(CIAFEL)和人口健康综合和翻译研究实验室(ITR),体育系,波尔图大学,Porto,4200-450 - 450 - 450-450 - 450-450- PORTO,COIMBRA),COIMBRA IMIMBRA,PORYTRA) 3046-854 Coimbra,葡萄牙9分子物理化学R&D R&D单元,Coimbra大学化学系,3004-535 Coimbra,葡萄牙10 CNC,CNC-神经科学和细胞生物学的中心,Coimbra大学,Coimbra大学,3004-504-504 Coimbra,3004-504 Coimbra,coimbra,portugal * sotementys:paulo.mat caulo.mat; cauloore; mat; cauloore;电话。: +351-239480014;传真: +351-239480034