DST&RE 与合作机构合作,在印度政府科技部、生物技术部的支持下,建立了昌迪加尔技能维吉安中心。该中心邀请来自公认学校董事会、学院和大学的学生申请生命科学、制药和食品领域的学生培训计划 (STP) 和技术人员培训计划 (TTP)。昌迪加尔 GGDSD 学院将提供为期 3 个月的培训计划,旨在通过实践培训提高学生技能并使他们具备行业就业能力,从而促进学生的职业发展道路。入选候选人将根据模块选择获得每月津贴和行业技能委员会 (LSSSDC & FICSI) 的证书。有关更多详细信息和注册,请访问 https://chandigarh.gov.in/departments/other-departments/science-technology-renewable-energy 和 http://ggdsd.ac.in/ 。申请截止日期为 2024 年 10 月 25 日。
区。将鼓励流程数字化,以促进更快、更简单的程序。6. 为什么昌迪加尔的区和邦/联邦属地只有一个出口计划?昌迪加尔是一个市邦。在行政上,它是中央政府内政部控制下的联邦属地。昌迪加尔只有一个区。因此,区出口产品将与邦/联邦属地产品相同。同样,区与邦/联邦属地具有相同的优势、劣势、机会和威胁。因此,区出口计划与邦出口计划相同。7. 为落实尊敬的总理的愿景,昌迪加尔政府成立了邦出口促进委员会。由于昌迪加尔是单区联邦属地,因此尚未成立单独的区出口促进委员会。政府于 2020 年 10 月 7 日发布了委员会成立通知:
“国际人权不仅是我本科和研究生时期关注的重点,也是我作为富布赖特研究员关注的重点,因此我认为这是一个很好的机会,可以利用我过去的经验并发展我在 ESG 方面的专业知识。对于公司中和我级别相当的人来说,从头到尾参与如此引人注目的事情也令人兴奋,所以我感到非常幸运。我学到的最宝贵的一课是如何以一种鼓励成长和支持改进努力的方式来构建批评。”
NIELIT 有望成为印度在信息、电子和通信技术 (IECT) 领域提供正规和非正规教育、研究、考试和认证的著名机构。该中心在一场毁灭性的火灾中被毁,随后迁至现在的罗帕尔校区。该中心将延续其传统,致力于启动量子计算、数据工程和 VLSI/芯片设计领域的 MTech 课程,以及 AIML 和网络安全与数字取证领域的其他工程/文凭课程,同时作为印度政府未来技能主要计划的主要合作伙伴,发挥重要作用,塑造国家的技能发展计划
蔡明华博士 SIMTech Dou Yee Technologies – SIMTech/IMRE/IHPC JL – 开发先进粉末冶金 (PM) 制造以提高技术能力和运营效率 陈庆锋博士 IMCB 以新型体外和体内肿瘤模型为指导的 CAR-T 疗法开发 康昌伟博士 IHPC 液化天然气和海上风电的数字化设计和优化 黄兆宏博士 SIMTech 航空航天 MRO 的数字化先进制造工艺 程方博士 ARTC JM VisTec A*STAR 智能视觉联合实验室 用于棕地应用的 3DPLUS 视觉技术 Vempati Srinivasa Rao IME IME 先进包装 3.0 应用卓越中心(包装 3.0) 苏心懿博士 IMCB IMCBNUSSERIXCell 联合实验室:RECET(再生细胞疗法)
印度野生动物研究所(WII)是一家国际知名的机构,致力于通过能力建设,研究,学者和咨询服务来加强野生动植物保护和管理。该研究所积极从事与生物多样性有关的问题的整个广度研究。Wii邀请印度国民申请Wii的各种研究项目下的04个研究/项目人员合同立场。适当填写的申请形式以及所有自我调查的文件和申请/处理费用应由 - 仅向印度野生动物研究所,Chandrabani,Dehradun,Dehradun,Dehradun - 248 001(Uttarakhand)(Uttarakhand)和
图 1.1 能源三难困境。 ........................................................................................................... 1 图 1.2 全球能源消耗 [10]。 ......................................................................................................... 2 图 1.3 风电输出呈现 Kolmogorov 谱特征 [52]。 .................................................... 6 图 1.4 独立的光伏氢能发电系统 [62]。 ......................................................................................... 7 图 1.5 参考文献 [102] 将风能划分为每小时能量、负荷跟踪和调节部分的概念图。 ........................................................................... 11 图 2.1 风力涡轮机的理论功率曲线。 ........................................................................................... 22 图 2.2 美国为研究风能变化和 SAWP 系统而选定的六个地点。 ........................................................................................... 24 图 2.3 美国科罗拉多州 12 个选定的风电互联地点。 ........................................................................................................................................... 25 图 2.4 2012 年西半球 2012 年在 (a) 旧金山、(b) 洛杉矶、(c) 丹佛、(d) 休斯顿、(e) 芝加哥、(f) 纽约的风速。 ........................................................................... 26 图 2.5 北美和南美选定的六个地点,用于研究太阳能变化、SAPVP 系统和独立的风能和太阳能混合发电系统。 30 图 2.6 2017 年西半球 2017 年在 (a) 基多、(b) 瓦伦西亚、(c) 墨西哥城、(d) 休斯顿、(e) 盐湖城、(f) 温哥华的太阳辐照度。 ........................................................................... 31 图 2.7 不同纬度地区太阳辐射发射示意图。 ........................................................................................................................................................ 33 图 2.8 2007 年至 2012 年,相关系数随两台风力涡轮机之间的距离而变化。 ........................................................................................................................... 44 图 2.9 2007 年至 2012 年(a)基多、(b)瓦伦西亚、(c)墨西哥城、(d)休斯顿、(e)盐湖城、(f)温哥华相关系数随太阳能/风能混合比例而变化。 ........................................................................................................... 45 图 2.10 2012 年休斯顿(a)风能和(b)太阳能的频谱。 ........................................................................................................................................... 48 图 2.11 2007 年(a)、2008 年(c)、2009 年(d)2010 年(e)12 个选定地点不同数量的互连风力涡轮机的频谱2011 年、(f)2012 年。..............................................................................49 图 2.12 2012 年 (a) 基多、(b) 瓦伦西亚、(c) 墨西哥城、(d) 休斯顿、(e) 盐湖城、(f) 温哥华不同混合比例互联风能和太阳能的频谱。 ........................................................................................................... 50 图 2.13 美国选定的 6 个地点的 D wavg ( j ) 与 f ( j ) 的关系以及 (b) 北美和南美选定的 6 个地点的 D Savg ( j ) 与 f ( j ) 的关系。 ........................................................... 56 图 2.14 2007 年至 2012 年 (a) 旧金山、(b) 洛杉矶、(c) 丹佛、(d) 休斯顿、(e) 芝加哥、(f) 纽约的 DW ( y ) (j) 与频率 f ( j )。 .................................................... 57 图 2.15 2007-2012 年 (a) 基多、(b) 瓦伦西亚、(c) 墨西哥城、(d) 休斯顿、(e) 盐湖城、(f) 温哥华的 DS ( y )( j ) 和频率 f ( j )。 ........................................................... 58 图 3.1 典型的独立 (a) 风力发电、(b) 太阳能发电、(c) 混合风能和太阳能发电系统。 ............................................................................................................. 62 图 3.2 P RE 和 PL 之间的功率不匹配 . ........................................................................................... 64 图 3.3 典型的年平均住宅用电量 (a) 24 小时负荷数据 (b) 一年负荷数据,(c) 负荷谐波频谱。 ............................................................................................. 65
