Renaissance/HXI是最高质量RF,微波和毫米波组件和子系统的交钥匙提供商。我们为汽车,电信,航空航天,空间和国防应用的集成被动和主动组件提供设计,工程功能和定制解决方案。文艺复兴时期/HXI是AS9100质量标准认证公司,所有产品均在ITAR Conlolled设施中设计和制造。组件功能和应用程序:
然而,这些解决方案可以分为四个独立的部分,可以单独使用或作为组合解决方案的一部分使用。它们是浸没、隔离、绝缘和扩散。浸没利用机械泵送和冷却系统(主动热管理),是解决与热相关的问题的更昂贵和更复杂的方法。不太复杂且成本较低的是被动隔离、绝缘和扩散热管理方法,它们结合了我们在 JBC 转换的性能材料。被动热管理依赖于性能材料固有的物理特性。例如,具有耐高温和固有低热导率的材料在隔离极端热量方面表现出色。其他材料利用热导率、发射率和相变化学等特性,有效地将热量从敏感组件转移到周围环境中,和/或将其分散到更宽的表面上,以最大限度地减少电池组内的热点。
本研究提出了一种新的神经自适应技术概念,即双被动-反应脑机接口 (BCI),可实现人与机器之间的双向交互。我们在逼真的飞行模拟器中实现了这样一个系统,使用 NextMind 分类算法和框架来解码飞行员的意图(反应性 BCI)并推断他们的注意力水平(被动 BCI)。12 名飞行员使用反应性 BCI 执行检查单以及由被动 BCI 监督的防撞雷达监控任务。当后者检测到飞行员没有遇到即将到来的碰撞时,它会模拟自动避让动作。当仅执行检查单任务时,反应性 BCI 的分类准确率达到 100%,平均反应时间为 1.6 秒。当飞行员还必须驾驶飞机并监控防撞雷达时,准确率高达 98.5%,平均反应时间为 2.5 秒。被动 BCI 的 F 1 − 得分为 0.94。首次演示展示了双 BCI 改善人机协作的潜力,可应用于各种应用。
和许多研究领域的情况一样,脑机接口 (BCI) 领域数据共享仍然很少,尤其是在被动 BCI 领域——即基于从脑部测量估计的用户心理状态实现隐性交互或任务调整的系统。此外,该领域的研究目前面临一个重大挑战,即解决脑信号变异性,例如跨会话变异性。因此,为了在该领域发展良好的研究实践,并使整个社区能够联合起来进行跨会话估计,我们创建了第一个关于跨会话工作量估计的被动脑机接口竞赛。本次竞赛是第三届国际神经人体工程学会议的一部分。数据是从 15 名志愿者(6 名女性;平均 25 岁)获得的脑电图记录,他们进行了 3 次多属性任务组合 II (MATB-II) 测试,每次测试间隔 7 天,每场测试有 3 个难度级别(伪随机顺序)。数据(训练和测试集)与 Matlab 和 Python 玩具代码一起在 Zenodo 上公开提供(https://doi.org/10.5281/zenodo.5055046)。到目前为止,该数据库的下载次数已超过 900 次(2021 年 12 月 10 日所有版本的独立下载次数:911)。来自 3 大洲的 11 个团队(31 名参与者)提交了他们的作品。表现最好的处理流程包括基于黎曼几何的方法。虽然结果优于调整后的随机水平(对于 3 类分类问题,α 为 0.05,结果为 38%),但准确率仍然低于 60%。这些结果清楚地强调了跨会话估计的真正挑战。此外,它们再次证实了黎曼方法对 BCI 的稳健性和有效性。相反,三分之一的方法(4 个团队)基于深度学习获得了随机水平结果。与传统方法相比,这些方法在本次比赛中没有表现出更优的结果,这可能是由于严重的过度拟合。然而,这次比赛是共同努力解决 BCI 变异性并促进包括可重复性在内的良好研究实践的第一步。
美国国家航空航天局 (NASA)、Redwire Space 和特百惠品牌公司 (Tupperware) 联合开发了一种改进的国际空间站 (ISS) 植物种植系统。自 2014 年以来,国际空间站上的宇航员农民一直在蔬菜生产系统(也称为“Veggie”设施)内种植各种多叶蔬菜和五颜六色的鲜花。然而,NASA 一直在寻求改进现有技术,同时减少对机组人员时间等资源的需求。为了减少宇航员必须给太空中生长的植物浇水的频率,霍华德·莱文博士和他的同事在美国宇航局肯尼迪航天中心 (KSC) 开始探索 Veggie 中用于支撑植物根部的组件的新设计概念,即所谓的“植物枕头”。KSC 的研究产生了一种被称为 PONDS 的半水培设计概念。著名厨房和家居用品品牌 Tupperware 和 Redwire 合作进一步开发了这一概念,并制造了适合太空飞行的 PONDS 植物生长装置,供国际空间站使用。Tupperware 正在利用其在可制造性设计、注塑成型和食品安全建筑材料方面的深厚知识和长期成功经验,打造出一种利用毛细力和不寻常的几何形状来取代重力的系统。最终的产品有望为在太空中生长的植物提供与陆地植物功能几乎相同的生长环境。
摘要。由于建筑行业可持续发展的需要,提高建筑的能源效率并减少供暖和制冷的能源消耗非常重要。在一个充满创新解决方案和技术的不断变化的世界中,乡土建筑的被动策略更多地用于实现生活质量并消除对环境和人类健康的负面影响。乡土建筑以当地建筑材料为基础,受到当地传统、文化和气候的影响。主要用于住房的“无建筑师建筑”随着时间的推移而发展,反映了建筑的技术水平和历史背景。这种建筑的核心是利用建筑从自然环境中收集免费能源。随着时间的推移,乡土建筑固有的、永恒的知识提供了舒适生活的基本水平,而无需包括技术在内的主动策略。被动建筑策略的定义是尽量减少或避免能源消耗,利用建筑和自然环境产生供暖、制冷、通风和照明。自然环境的元素是能源的来源:太阳、地球、空气——风、水。通过添加主动技术,生活质量必须提高,但不会影响通过被动策略获得的主要资源。
摘要。建筑物理和气候适应的建筑设计参数,例如站点,建筑形式,方向,阴影和信封性能(包括结构和开口),在更好的能源绩效并减少建筑物的环境影响方面占了很大比例。由于对冷却和加热系统的广泛使用而得出的电力需求的广泛需求需要进化并纳入设计实践中的最低能量性能要求。本文的目的是为研究人员,科学家和从业人员在规划,建筑建筑业中促进被动设计特征和能量模拟的作用。共同,这三个行业正在持续发生转变,从而使可持续的环境,资源保护和能源效率的问题变得至关重要。这项研究的发现需要科索沃的文化同化(包括课程),建筑行业和建筑所有者决策。为了实现策略并实施新概念,重要的是要以紧迫感解决这些问题。
摘要:现在,为了使建筑物正常运转,必须限制建筑物对传统能源的使用。建筑物在世界各地消耗大量能源。由于建筑物具有巨大的节能潜力,被动设计标准受到了广泛关注。被动设计方法可最大限度地减少能源消耗,同时最大限度地利用可再生能源,这被广泛认为是实现低能耗和可持续未来的最重要途径,尤其是在建筑行业。通过管理建筑物外部的热量损失和热量增加,被动结构可以实现最低的能源需求。因此,在冬季和夏季,几乎不需要能源投入,在高峰温度期间,只需极少的能源投入,即可保持热舒适度。在建筑行业使用被动技术可能是提高建筑能源效率的潜在方法。有多种被动设计解决方案可以最大限度地减少建筑物的能源负担,例如利用自然资源和考虑气候,尤其是在规划供暖、制冷、照明和通风时。它减少了在结构内实现舒适度所需的额外能源。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
在没有明显运动的情况下,支持身体运动的大脑系统在听音乐时处于活跃状态。这种隐蔽的运动活动尚不十分清楚,但一些理论提出它在通过运动模拟促进的听觉时间预测中发挥作用。一个问题是与音乐相关的隐蔽运动活动与明显运动期间的运动活动有何关系。我们使用头皮脑电图通过测量 μ 节律来解决这个问题——μ 节律是与躯体运动系统相关的出现在感觉运动皮层的皮层场现象。在足部与手部运动范式中,在足部运动期间/之前手部感觉运动皮层的单侧 μ 增强被认为反映了在另一个效应器当前/未来运动期间手部运动的抑制。在抑制运动的情况下听音乐过程中的 μ 行为尚未确定。我们在无运动的静默、明显运动(足部/手)和无运动的听音乐期间记录了 32 通道脑电图(n = 17)。使用基于独立成分分析的源等效偶极子聚类技术,我们确定了三个与 mu 相关的簇,位于左侧初级运动皮质和右侧和中线前运动皮质。右脚轻敲伴随着左侧源簇中的 mu 增强,重复了之前的工作。音乐聆听伴随着左侧和中线簇中的类似 mu 增强。据我们所知,我们是第一个在没有明显运动的情况下报告和源解析音乐相关 mu 调制的人。隐性音乐相关运动活动已被证明在节拍感知中发挥作用(Ross JM、Iversen JR、Balasubramaniam R. Neurocase 22:558 – 565,2016)。我们目前的结果显示,体位组织的 mu 得到增强,支持节拍感知期间的明显运动抑制。