简介:从无序的非生物系统到有组织的分子结构的转变对我们理解热力学提出了重大挑战。尽管第二定律规定熵普遍增加,但表现出高分子复杂性的局部区域(例如生命早期涉及的区域)表明某些环境可以保持持续的偏离平衡状态。揭示促成这些转变的物理条件和机制对于解释生命起源前化学的出现和更广泛的自组织系统现象至关重要。在这里,我们对纳米裂缝网络可能产生的自调节富含热水的环境和量子隧穿介导的有机物合成增加的潜力进行了初步评估。我们还提出了一个初步的理论框架,该框架结合了多种形式的熵,以开发一种方法来独立追踪不确定性和无序属性,这些属性可能会推动由无生源论所暗示的新兴复杂性。纳米裂缝中的热自调节:维持宜居性:在纳米级裂缝中,水的热导率偏离其本体值 0.6 Wm -1 K -1 ,在三个范围内表现出类似阈值的转变:60 °C 以下:在矿物表面附近形成以刚性氢键为特征的冰状层,降低至 0.2–0.4 Wm -1 K -1 。60–100 °C:这些刚性层的部分破坏和与矿物晶格的声子耦合增加升至 0.3–0.6 Wm -1 K -1 。在这个中间范围内,该系统实现了一种自我热调节或“优先稳定性”,因为增量加热仅破坏了氢键网络的一部分,同时保留了足够的结构以防止完全转变为纯声子主导的传导。 100 °C 以上:结构化水的分解导致主要由声子驱动的热传输,推高至 0.6 Wm -1 K -1 以上,并接近 150– 200 °C(1.5–2 eV)时的键降解阈值。减半会使温度减半和加倍。较低的温度会使区域更长时间保持高温,促进高活化能反应并稳定冰状网络。局部加热会破坏 H 键晶格,形成保持秩序的反馈回路。这些非平衡条件产生不同的温度-时间曲线,从而实现原本无法接近的途径。我们注意到,关于水在纳米级裂缝中降低的热导率(0.3–0.6 Wm -1 K -1 )、连续热模型的有效性以及在纳米尺度上水的导热系数降低(0.3–0.6 Wm -1 K -1 )仍然存在不确定性。
2.1 数据表中列出的采购机构打算按照数据表中指定的选择方法从邀请函中列出的顾问中选出一名顾问。符合条件的顾问将受邀提交数据表中指定的技术建议书和财务建议书,或仅提交技术建议书,以获得数据表中指定的任务所需的咨询服务。该建议书将成为与选定的顾问进行谈判并最终签署合同的基础。 2.2 顾问应熟悉当地情况,并在准备建议书时考虑到这些情况,包括参加数据表中指定的预建议书会议。参加任何此类预建议书会议都是可选的,费用由顾问承担。 2.3 采购机构将及时免费向顾问提供数据表中指定的顾问建议书准备所需的投入、相关项目数据和报告。 3. 利益冲突
•收集并组织了驾驶员报告的初始诊断数据和条件,以确保数据质量进行分析。•分析诊断数据中的模式,以确定常见的维修和维护需求。•使用机器学习开发了预测模型,以预测初始诊断的未来维护要求。•带有维修记录的交叉引用的驾驶员报告,以验证和提高预测模型的准确性。•提供了可行的见解,以通过预测即将进行维修所需的专业知识来优化人工计划。•创建了维护时间表,以优先维修,减少不必要的维护和相关成本。•开发了一种跟踪系统,以监视预测模型在降低总体维护成本方面的有效性。•与环境团队紧密合作,以了解预测性维护如何延长
洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占的、免版税的许可,可以为了美国政府的目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
摘要:近年来见证了研究的上升,强调了肠道菌群作为运动员健康的主要决定因素的作用,这对它与运动员的身体表现相关的假设引起了人们的兴趣。运动员的身体表现可能会受到肠道中各种微生物的代谢活性的影响。肠道菌群会影响运动员生理的多个方面,包括免疫反应,肠膜完整性,宏观和微量营养素吸收,肌肉耐力和肠道 - 脑轴。几个生理变量控制肠道菌群;因此,必须实施一个复杂的量身定制且复杂的框架,以理解性能 - 微生物群的相互作用。新兴的证据强调了肠道微生物组和身体上的复杂关系,表明从事常规体育锻炼的运动员表现出更丰富的肠道微生物,尤其是在Firmicutes Phylum中,例如Ruminococaccaceae Genera,与他们的言论属性相比。在精英运动中,实施非常规策略是一项挑战,同时又可以帮助运动员完成可行,平衡的发展。本评论汇总了肠道微生物群调制对运动表现的影响的研究,并说明了肠道菌群的不同补充策略如何通过增强身体能力来提高运动表现。这些发现应为运动营养和培训领域的理论和实际发展提供信息。除了促进运动员的整体健康外,这项研究还评估了现有文献,以阐明涉及肠道菌群的干预措施如何显着改善领域的性能。
断裂和损伤力学这个术语让很多人感到有些不安。这是因为,直到最近,力学的主要重点还是材料的强度和阻力。对于某些人来说,谈论断裂就像谈论一种致命的疾病一样令人不舒服。但是,就像预防致命疾病一样,必须了解其性质、症状和行为;要确保结构的强度,必须了解其潜在故障的原因和性质。断裂问题在材料强度科学中至关重要。但是,作为可变形固体力学的一个独立分支,断裂力学不仅起源于最近,而且其边界尚未明确界定。因此,将来自许多不同科学和工程分支的代表的努力结合起来,对断裂概念进行全面研究至关重要。同样重要的是,术语的差异(这在不同科学中很常见)和普遍认为所有问题的答案都存在于一般问题的特定部分这一信念不会导致概念争议被词语争论所取代的情况。目前,常规断裂力学是研究裂纹或裂纹系统扩展的条件。但是,裂纹的性质不同,并且在不同的尺度水平上进行考虑。一种极端情况是晶粒断裂,当两个原子层之间的距离足以忽略原子之间的相互作用力时,晶粒断裂会以亚微观裂纹开始。另一个极端的例子是核反应堆焊接涡轮转子中出现的裂纹,裂纹的长度和宽度可能达到厘米;这被称为宏观断裂。在第一种情况下,裂纹扩展的条件由裂纹尖端的原子结构定义。这里考虑的是由原子而不是连续介质形成的离散晶格;因此,“裂纹尖端”的概念本身变得不确定。这种亚微观裂纹及其与其他晶格缺陷相互作用的行为的研究本质上属于固体物理学而不是力学的领域;然而,经典弹性理论的方法完全是
本文研究了模拟玻璃骨折中相位模型的挑战和潜力。相位场方法是断裂建模的变分方法,将裂纹视为扩散的界面,从而消除了对显式裂纹跟踪的需求。这项研究探索了其对玻璃的应用,玻璃具有独特的裂缝特性,由于其无定形结构和脆性。我们使用ABAQUS实施了AT1相位模型,并针对各种实验设置进行了验证,包括微型计算机和微柱测试,L形样品以及动态的拉伸裂缝场景。结果表明,与实验观察结果有很强的比对,可以准确捕获复杂的裂纹模式和动态断裂行为。关键参数(例如临界能量释放速率和内部长度尺度)显示出显着影响断裂模拟结果。虽然相位方法在推进玻璃断裂力学方面表现出希望,但挑战仍然存在于参数敏感性和整合更复杂的材料模型中。本研究强调了该方法的当前功能,并指出了未来的研究方向,以提高其在玻璃断裂模拟中的适用性和效率。
亚当斯,道格拉斯。终极搭便车指南。完整且未删节。纽约:Wings Books,1996 年。 Ben Jiang。“中国科技老兵在 ChatGPT 狂潮中投身人工智能初创企业。”南华早报,2023 年 4 月 7 日。https://www.scmp.com/tech/tech-trends/article/3217457/chinese-tech-veterans-jump-ai-start-ups-amid-chatgpt-frenzy。 克劳塞维茨,卡尔·冯。论战争。迈克尔·艾略特·霍华德和彼得·帕雷特主编。第一次平装印刷。新泽西州普林斯顿:普林斯顿大学出版社,1989 年。 哈夫,达雷尔和欧文·盖斯。如何用统计数据说谎。诺顿平装再版。纽约:诺顿,1993 年。 Ian Bogost。“ChatGPT 比你想象的还要愚蠢。”大西洋月刊 (在线),2022 年 12 月 7 日。https://www.theatlantic.com/technology/archive/2022/12/chatgpt-openai-artificial- intelligence-writing-ethics/672386/。李开复。人工智能超级大国:中国、硅谷和新世界秩序。纽约霍顿·米夫林·哈考特出版社,2018 年。迈克尔·拉里斯。 “致命的特斯拉车祸与技术和人为失误有关”,《华盛顿邮报》[在线],2020 年 2 月 25 日。https://www.washingtonpost.com/local/trafficandcommuting/deadly-tesla-crash-tied-to-technology-and-human-failures-ntsb-says/2020/02/25/86b710bc-574d-11ea-9b35-def5a027d470_story.html。奥尼尔,凯茜。数学毁灭武器:大数据如何加剧不平等并威胁民主。第一版。纽约:Crown,2016 年。肖天亮。军事战略学。楼耀良、康武超、蔡仁钊主编。北京,中国:国防大学出版社,2020 年。
摘要:空气中的红外热扫描仪可用于检测裂缝和洞穴开口,但仅在某些条件下。首先,空隙内的温度必须与外部条件显着不同。其次,必须存在某种机制将这种热差异带到可以被扫描仪检测到的表面。此外,必须确定其他事件是否影响这种机制。在裂缝的情况下,传导和对流都在改变裂缝上的雪桥表面温度方面的作用。对于洞穴,对流是带来温度改变的机制。对流与呼吸周期有关,而呼吸周期又是由气压压力变化引起的。可以从内部温度,外部温度和大气压力的地面测量中选择飞行时间,从而提供最有利的情况。洞穴信号更多是一个问题,因为它经常被其他事件引起的相似信号所包围。为格陵兰岛的裂隙场和波多黎各的洞穴系统提供了结果。