类脑计算是借鉴脑科学基本原理,打破 “ 冯诺依曼 ” 架构束缚的新型计算技术。本研究组将从理论和器件两个方向对类脑计算展开协同 研究。 理论方面:研究类脑计算架构、模型和算法,探索基于类脑计算的类脑智能的基础理论;借鉴神经元模型、神经环路传导、神经编码 及认知、学习、记忆、决策等神经机制,逐步建立和完善类脑处理信息处理的数学 / 计算原理和模型;构建类脑计算和智能的统一理论 框架。为类脑计算器件及系统的发展提供理论基础。 器件方面:基于新材料和新技术,研究新型高性能类脑神经器件,解决一致性差、可靠性差、规模化难等痛点;研究基于类脑神经器 件的网络架构,构建大规模阵列,开展外围电路的研发与设计;研究基于新型类脑器件的感知和计算架构,发展感存、存算、感存算 一体系统。
在GWAS基因座附近发现的从头变体的功能注释,有或没有left裂的嘴唇sarah W. Curtis 1,Laura E. Cook 3,Kitt Paraiso 3,Kitt Paraiso 3,Axel Visel 2,3,Axin L. Cotney 4,Justne L. Cotney 4,Justney 5 J. Leslie-Clarkson 1 * 1-人类遗传学系,埃默里大学医学院,亚特兰大,佐治亚州亚特兰大,30322 2-美国能源部联合基因组研究所,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州伯克利,3-环境基因组和系统生物学部,加利福尼亚州伯克利,加利福尼亚州伯克利。4- - 费城儿童医院,宾夕法尼亚州费城儿童医院研究所,19104年5月5日 - 爱荷华州爱荷华大学儿科学系,爱荷华州,爱荷华州,52242 6-流行病学系,约翰·霍普金斯·布卢姆伯格公共卫生部,巴尔蒂群岛,哥伦比亚省,约翰斯·霍普金斯·布卢姆伯格(Johns Hopkins Bloomberg)宾夕法尼亚州匹兹堡匹兹堡大学生物学,15261 8-匹兹堡大学人类遗传学系,宾夕法尼亚州匹兹堡,匹兹堡,15621 9-匹兹堡生物统计学和健康数据科学系,匹兹堡,匹兹堡,匹兹堡,宾夕法尼亚大学,15261年,宾夕法尼亚大学15261年。颅面出生缺陷,影响700分的分娩,有强大的遗传基础,家庭内部复发风险很高。 因此,我们从1,409个三重点重新分析了现有的DNV数据集,其OFC经过了已知的OFC相关基因座的靶向测序。 然后,我们通过在人类颅面发育过程中从预测的表观遗传功能数据集中提供了这些DNV的注释。- 费城儿童医院,宾夕法尼亚州费城儿童医院研究所,19104年5月5日 - 爱荷华州爱荷华大学儿科学系,爱荷华州,爱荷华州,52242 6-流行病学系,约翰·霍普金斯·布卢姆伯格公共卫生部,巴尔蒂群岛,哥伦比亚省,约翰斯·霍普金斯·布卢姆伯格(Johns Hopkins Bloomberg)宾夕法尼亚州匹兹堡匹兹堡大学生物学,15261 8-匹兹堡大学人类遗传学系,宾夕法尼亚州匹兹堡,匹兹堡,15621 9-匹兹堡生物统计学和健康数据科学系,匹兹堡,匹兹堡,匹兹堡,宾夕法尼亚大学,15261年,宾夕法尼亚大学15261年。颅面出生缺陷,影响700分的分娩,有强大的遗传基础,家庭内部复发风险很高。因此,我们从1,409个三重点重新分析了现有的DNV数据集,其OFC经过了已知的OFC相关基因座的靶向测序。然后,我们通过在人类颅面发育过程中从预测的表观遗传功能数据集中提供了这些DNV的注释。尽管以前的许多研究都将常见的,非编码的遗传基因座与OFC相关联,但在OFC案例中,先前对从头变异的研究(DNV)的研究重点是编码可能对蛋白质结构产生功能影响的变体,并且对非编码DNV对OFC形成的贡献也没有被忽略,并且已被忽略了。在预测的增强子或启动子区域内。两个DNV落在相同的增强子区域(HS1617)之内,这超出了偶然性的预期(p = 0.0017)。预计由这些DNV引起的序列变化将创建在转录因子PAX6和ZBTB7A的参考序列中未见的结合位点,并破坏了STAT1和STAT3的结合位点。该增强子区域与HHAT,SERTAD4和IRF6在同一拓扑相关的域内,所有这些区域都参与颅面发育。这三个基因在人神经rest细胞中高度表达。HHAT和IRF6的基因敲除小鼠具有异常的胚胎发育,包括left裂,IRF6及其周围的变体与人类OFC的非综合症和综合综合症形式有关。综上所述,这表明非编码DNV有助于OFC的遗传结构,在增强子区域中,OFC Trios的DNV负担在已知的OFC相关基因附近。总的来说,这增加了我们对OFC形成基础的遗传机制的理解。
DOI: 10.7498/aps.71.140101 类脑计算技术作为一种脑启发的新型计算技术 , 具有存算一体、事件驱动、模拟并行等特征 , 为 智能化时代开发高效的计算硬件提供了技术参考 , 有望解决当前人工智能硬件在能耗和算力方面的 “ 不可持续发展 ” 问题 . 硬件模拟神经元和突触功能是发展类脑计算技术的核心 , 而支持这一切实现 的基础是器件以及器件中的物理电子学 . 根据类脑单元实现的物理基础 , 当前类脑芯片主要可以分 为数字 CMOS 型、数模混合 CMOS 型以及新原理器件型三大类 . IBM 的 TrueNorth 、 Intel 的 Loihi 、清华大学的 Tianjic 以及浙江大学的 Darwin 等都是数字 CMOS 型类脑芯片的典型代表 , 旨 在以逻辑门电路仿真实现生物单元的行为 . 数模混合型的基本思想是利用亚阈值模拟电路模拟生物 神经单元的特性 , 最早由 Carver Mead 提出 , 其成功案例有苏黎世的 ROLLs 、斯坦福的 Neurogrid 等 . 以上两种类型的类脑芯片虽然实现方式上有所不同 , 但共同之处在于都是利用了硅基晶体管的 物理特性 . 此外 , 以忆阻器为代表的新原理器件为构建非硅基类脑芯片提供了新的物理基础 . 它们 在工作过程中引入了离子动力学特性 , 从结构和工作机制上与生物单元都具有很高的相似性 , 近年 来受到国内外产业界和学术界的广泛关注 . 鉴于硅基工艺比较成熟 , 当前硅基物理特性是类脑芯片 实现的主要基础 . 忆阻器等新原理器件的类脑计算技术尚处于前沿探索和开拓阶段 , 还需要更成熟 的制备技术、更完善的系统框架和电路设计以及更高效的算法等 .
* Keith B. Hall 是路易斯安那州矿产法研究所所长,也是路易斯安那州立大学的法学教授。他担任新奥尔良律师协会石油和天然气部门主席、路易斯安那州律师协会环境法部门即将上任的主席以及落基山矿产法基金会董事会成员。此外,他还与人合著了《路易斯安那州律师杂志》双月刊上的《最新发展:矿产法》。在加入路易斯安那州立大学之前,他是新奥尔良 Stone, Pigman, Walther, Wittmann LLC 的成员,在那里执业 16 年,专注于石油和天然气法、环境法和有毒侵权诉讼。他还担任该公司能源和环境实践小组的联席主席,并撰写了其律师事务所博客《石油和天然气法简报》。在从事法律工作期间,他还担任新奥尔良洛约拉大学法学院的兼职教授,讲授《矿产法概论》课程。
路易斯安那州立大学。他担任新奥尔良律师协会石油和天然气部门主席、路易斯安那州律师协会环境法部门即将上任的主席以及落基山矿产法基金会董事会成员。此外,他还与人合著了《路易斯安那州律师杂志》双月刊的“最新发展:矿产法”。在加入路易斯安那州立大学之前,他是新奥尔良 Stone, Pigman, Walther, Wittmann LLC 的成员,在那里执业十六年,专注于石油和天然气法、环境法和有毒侵权诉讼。他还担任该公司能源和环境实践小组的联席主席,并撰写了其律师事务所博客“石油和天然气法律简报”。在从事法律工作的同时,他还担任新奥尔良洛约拉大学法学院的兼职教授,讲授《矿产法概论》课程。
SSC 2010 财年项目建议:制定确定船体残余应力的通用设计指南 提交人:Sreekanta (Sree) Das,加拿大温莎大学。1.0 目标。1.1 船体是船舶的主要结构部件,通常由加强钢板制成。钢板通过焊接加强筋来加强。焊接过程会产生残余应力,这会导致裂纹萌生和裂纹扩展的潜在问题。已完成一些研究,以确定由带有一个或两个加强筋的钢板组成的船体部件中残余应力纵向分量的分布。然而,需要进行详细的研究以制定全面的设计指南,供船舶制造商、航运业和结构工程师用来确定残余应力所有三个法向分量的真实分布。因此,拟议项目旨在开展一项详细研究,以制定一般准则,帮助确定船体所有位置和三个方向的残余应力的所有三个分量。这项研究还将考虑焊接过程中的停止和启动以及加强筋的突然终止的影响。最先进的中子衍射 (ND) 方法将用于实验研究中残余应变的精确测量。非线性有限元 (FE) 建模将用于详细的参数研究。2.0 背景。2.1 船体结构由钢板制成,钢板由钢梁和大梁加固。结构部件(梁、大梁、板)通过焊接连接。焊接过程会在板材中产生大量热量输入,因此,当加固板冷却时会产生局部残余应力。船舶承受连续的循环载荷,因此疲劳失效和疲劳寿命是船舶结构的主要设计考虑因素之一。由于应力集中和残余应力的存在,大多数疲劳裂纹和随后的疲劳失效都始于两个结构部件之间的连接处。已经完成了大量研究工作,以确定考虑残余应力影响的船体结构疲劳寿命。在这些研究中,假设残余应力的纵向分量具有理想化且非常简单的分布,尽管人们知道残余应力分布取决于几个因素,包括 (i) 焊接过程中产生的热输入水平、(ii) 母钢板的厚度和 (iii) 加强筋的间距。最近完成的项目 SR-1456 考虑了热输入水平
* Keith B. Hall 是路易斯安那州矿产法研究所所长,也是路易斯安那州立大学的法学教授。他担任新奥尔良律师协会石油和天然气部门主席、路易斯安那州律师协会环境法部门即将上任的主席以及落基山矿产法基金会董事会成员。此外,他还与人合著了《路易斯安那州律师杂志》双月刊上的《最新发展:矿产法》。在加入路易斯安那州立大学之前,他是新奥尔良 Stone, Pigman, Walther, Wittmann LLC 的成员,在那里执业 16 年,专注于石油和天然气法、环境法和有毒侵权诉讼。他还担任该公司能源和环境实践小组的联席主席,并撰写了其律师事务所博客《石油和天然气法简报》。在从事法律工作期间,他还担任新奥尔良洛约拉大学法学院的兼职教授,讲授《矿产法概论》课程。
* Keith B. Hall 是路易斯安那州矿产法研究所所长,也是路易斯安那州立大学的法学教授。他担任新奥尔良律师协会石油和天然气部门主席、路易斯安那州律师协会环境法部门即将上任的主席以及落基山矿产法基金会董事会成员。此外,他还与人合著了《路易斯安那州律师杂志》双月刊上的《最新发展:矿产法》。在加入路易斯安那州立大学之前,他是新奥尔良 Stone, Pigman, Walther, Wittmann LLC 的成员,在那里执业 16 年,专注于石油和天然气法、环境法和有毒侵权诉讼。他还担任该公司能源和环境实践小组的联席主席,并撰写了其律师事务所博客《石油和天然气法简报》。在从事法律工作期间,他还担任新奥尔良洛约拉大学法学院的兼职教授,讲授《矿产法概论》课程。
在当前计划中,强调了全厚度 CCA 样品的局限性。对于可归类为 CCA 测试(W ≤ 300 mm)的合理样品尺寸,现代船板(屈服强度 400 MPa)可测量的最大止裂韧性约为 172 MPa √ m。对于低 C、低 S、TMCP 材料,在目标温度下 LT 方向的裂纹止裂韧性预计会超过该值。但是,在不同于 LT 的方向(即 TL 或 45 o 至 LT)下,韧性可能会降低,这可以通过裂纹分叉来证明。在与分叉裂纹路径和 TL 方向一致的方向上对相同基材进行 CCA 测试是值得的。这种评估变得很重要,因为新船是使用这些现代钢材建造的,并且在细节区域,主应力可能与船的长轴不一致,并且裂纹可能采用阻力最小的路径。