开辟了快速识别潜在新型治疗方法的新途径 58,59 。分子建模技术和虚拟筛选可以明确地帮助药物重新定位工作。因此,面对 COVID-19 大流行的情况以及缺乏经过验证的治疗方法或疫苗,我们决定使用不同的生物信息学方法和我们新收集的约 8,000 种已批准和正在研究的化合物来寻找新型的潜在弗林蛋白酶抑制剂。抗真菌剂 Sulconazole 是在结构分析后确定的,并进一步发现它可以抑制主要细胞表面的成熟
1分子神经科学国家主要实验室,分子神经科学中心,干细胞研究中心,香港科学技术大学,中国香港。2香港神经退行性疾病中心,中国香港。3广东省级脑科学,疾病和药物开发的省级关键实验室,HKUST深圳研究所,深圳市洪孔脑科学研究所,中国深圳。4中国科学院的脑连接组和操纵的主要实验室,深圳的脑疾病转化研究主要实验室,脑认知和脑病研究所,深圳先进技术研究所,中国科学院,Shenzhen – Shenzhen – Nongnon-nongnon-nongnongon-nongnon-nongnongon-nongon-nongon-nongon-nongon-nong nong nong kongonkond5美国加利福尼亚州帕萨迪纳的加利福尼亚理工学院生物学和生物工程系。 6这些作者同样贡献:扬阳duan,陶叶。 ✉电子邮件:boip@ust.hk5美国加利福尼亚州帕萨迪纳的加利福尼亚理工学院生物学和生物工程系。6这些作者同样贡献:扬阳duan,陶叶。✉电子邮件:boip@ust.hk
。CC-BY-NC-ND 4.0 国际许可,根据 未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是 预印本的版权持有者(此版本于 2021 年 7 月 8 日发布。;https://doi.org/10.1101/2021.07.07.451518 doi:bioRxiv 预印本
摘要:Dnazymes已被广泛用于许多传感和成像应用中,但是自1994年发现以来,很少使用基因工程,因为它们的底物范围主要限于单链DNA或RNA,而遗传信息则存储在双链DNA(DSDNA)中。为了克服这一主要局限性,我们在这里报告了肽核酸(PNA)辅助双链DNA通过dnazymes(Panda)辅助的DNA迹象,这是将Dnazyme活性扩展到DSDNA的第一个例子。我们表明,熊猫在有效划痕或导致靶dsDNA上有双链破裂是可以编程的,靶DsDNA模仿了蛋白质核酸酶,并且可以充当分子克隆中的限制酶。除了比蛋白质酶小得多,在我们测试的条件下,熊猫还具有更高的序列保真度,这证明了其作为基因工程和其他生化应用的新型替代工具的潜力。
摘要:使用CRISPR-CAS9核酸酶进行基因组编辑是基于DNA双重断裂(DSB)的修复。在真核细胞中,DSB通过同源指导的修复(HDR),非同源末端连接(NHEJ)或微学介导的终端连接(MMEJ)途径重新加入。其中,人们认为NHEJ途径是主导的,并且发生在整个细胞周期中。已知基于NHEJ的DSB维修是错误的;但是,很少有研究深入研究内源基因。在这里,我们通过掺入外源性DNA寡核苷酸来量化基于NHEJ的DSB修复精度(称为NHEJ精度)。通过对DSB发生后的外源性DNA和内源性靶点之间的连接序列的分析,我们确定NHEJ准确性的平均值在HEK 293T细胞中的最大值约为75%。在深入的分析中,我们发现NHEJ的精度依赖于序列,并且DSB端的近端邻近基序(PAM)的值相对较低,低于PAM远端的DSB。此外,我们观察到插入突变比与NHEJ准确性程度之间存在负相关。我们的发现将扩大对CAS9介导的基因组编辑的理解。
简介鞘氨醇-1-磷酸裂解酶 1 ( SGPL1 ) 的双等位基因功能丧失突变导致鞘氨醇-1-磷酸裂解酶功能不全综合征 (SPLIS),这是一种与非溶酶体鞘脂储存相关的罕见代谢紊乱 (1, 2)。该综合征于 2017 年首次被描述 (3, 4)。迄今为止已报告约 50 例 (5–10)。大多数患者表现出类固醇抵抗性肾病综合征 (SRNS),并迅速发展为终末期肾病。肾病最常与局灶节段性肾小球硬化病理有关,包括侵袭性塌陷型。原发性肾上腺功能不全是第二大常见特征。中枢神经系统和周围神经系统缺陷可能包括发育迟缓或退化,伴有磁共振成像的特征性发现,约一半的病例与其他疾病特征同时发生或独立发生(1, 11)。T 细胞淋巴细胞减少症似乎是一种普遍特征,尽管某种程度的 T 细胞功能通常会持续存在。观察到的严重程度范围很广,一些受影响的个体在子宫内死亡,另一些在婴儿期死亡,而还有一些人在生命的头十年后期出现症状,并在支持性护理下活到成年。尚未建立治疗 SPLIS 的特定疗法。SGPL1 编码鞘氨醇磷酸裂解酶 (SPL),该酶负责鞘脂代谢的最后一步(12)。SPL 催化磷酸化鞘氨醇碱基的不可逆降解,产生两种产物:长链醛和乙醇胺磷酸盐。生物活性鞘脂鞘氨醇-1-磷酸酯 (S1P) 是主要的 SPL 底物。S1P 是 G 蛋白偶联 S1P 受体 (S1PR) 的配体,参与控制肌动蛋白细胞骨架组织、细胞迁移和细胞存活 (13)。S1P 信号传导调节淋巴细胞运输、血管生成、炎症和其他生理过程 (14)。体内 SPL 失活会导致组织 S1P 水平显著升高,并导致上游鞘脂中间体积聚,例如
基于疫苗的病毒(VACV)的载体广泛用作疫苗和癌症免疫疗法。VACV工程传统上依赖于父母病毒基因组和含转基因转移质粒之间的同源重组,这是一个不具体的过程,它需要使用选择或筛选标记物来分离重组者。这种方法的最新扩展试图通过使用CRISPR-CAS9工程来裂解感染细胞中的病毒基因组,以增强持续转基因病毒的恢复。但是,这些方法并不能完全消除WT病毒后代的产生,因此继续需要多轮病毒传播和斑块纯化。在这里,我们描述了MAVERICC(通过体外CRISPR/CAS9裂解对重组的无标记疫苗病毒工程),这是一种以克服当前限制的方式来设计重组VACV的新策略。Mavericc还利用CRISPR/CAS9系统,但不需要标记,并且在一个步骤中基本上可以对所需的重组剂进行本质上的纯制剂。我们使用这种方法在Vacv基因组中的多个位置和组合中引入点突变,插入和缺失。MAVERICC的效率和多功能性使其成为在病毒基因组中任意选择的位置生成突变体和突变体库以构建复杂的VACV载体的理想选择,并促进对矢量的改善,并促进POXVIRUS生物学的研究。2021 Elsevier Ltd.保留所有权利。
CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 古细胞分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这阐明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持确定的机制,并提出了基因组编辑和重组的常见催化策略。总体而言,描述的非目标DNA裂解催化
重要说明:在评估事先授权请求时,顾问将仅从医疗必要性的角度考虑治疗。如果批准了此请求,则不表明该成员仍然有资格获得医疗补助。是提供商的责任,启动了事先授权请求通过检查成员的医疗补助资格卡建立,并在与县人类服务部联系时,该会员将继续符合医疗补助。PAA-1001
摘要:CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 经典分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这证明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持了识别机制,并提出了基因组编辑和重组的常见催化策略。总体而言,此处描述的非目标DNA裂解催化解决了CRISPR-CAS9生物学中的基本开放问题,并为提高Cas9酶的催化效率和金属依赖性功能提供了宝贵的见解,这是基于基因组编辑工具的开发的基础。关键字:基因组编辑,QM/mm,自由能模拟,蛋白质/核酸相互作用,非编码RNA,磷酸二酯键裂解,镁辅助催化催化,CRISPR-CAS9■简介