我们要感谢各领域专家在我们进行的咨询中提出的意见、意见和宝贵建议,这是 TERI 正在进行的能源转型工作的一部分,特别是关于聚光太阳能发电厂 (CSP) 的工作。我们特别感谢并赞赏来自 MNRE、NTPC、监管援助项目 (RAP)、India One Solar、Godawari Green Energy Private Limited、IIT Delhi & Kanpur 的专家提供的有益见解,他们参加了 2023 年 5 月 30 日举行的圆桌讨论。所有相关人员的意见,尤其是 Shakti 可持续能源基金会顾问兼 SECI 前董事总经理 Ashvini Kumar 博士、NTPC 董事长兼董事总经理 Gurdeep Singh 先生、MNRE 科学家-D Anil Kumar 博士、Godawari Green Energy Ltd. 副总裁 Jitendra Solanki 先生和 TERI 的 Gajendera Singh Negi 先生,对报告和建议的制定发挥了重要作用。我们感谢 TERI 的编辑和设计团队的贡献。
第(5)条 主管部门的职权 为依法执行本法令,主管部门应在其管辖范围内,根据国家现行法律、法规和权力,行使以下职权: 1. 制定和批准分布式生产单元电力生产的总体政策。 2. 与服务提供商协调,确定允许连接到配电网的分布式生产单元的电压、规模以及许可用于生产分布式电力的可再生能源。 3. 与服务提供商协调,通过年度限额和将其分配给不同类别生产商的机制,以实现分布式生产单元电力生产的总体政策目标。 4. 与服务部门协调,根据有关州和酋长国批准的标准和规范,通过连接分布式生产单元的条款、规定、协议、要求、标准和规范,并定期对其进行审查,以确保配电网的稳定性
1个国家实验室阿斯塔纳,纳扎尔巴耶夫大学,阿斯塔纳010000,哈萨克斯坦; madina.zhalbinova@nu.edu.kz(M.R.Z.); saule.rakhimova@nu.edu.kz(S.E.R.); ulan.kozhamkulov@nu.edu.kz(U.A.K.); ulykbek.kairov@nu.edu.kz(U.Y.K。)2普通生物学和基因组学系,L。N。Gumilyov Eurasian国立大学,阿斯塔纳010000,哈萨克斯坦3医学系,塞米迪医科大学,Pavlodar Branch,Pavlodar 140000,哈萨克斯坦; gulbanu.akilzhanova@smu.edu.kz(G.A.A.); kenes.akilzhanov@smu.edu.kz(k.r.a.)4共和国诊断中心,CF“大学医学中心”,阿斯塔纳010000,哈萨克斯坦; assel.chinybayeva@umc.org.kz 5塞米医科大学,Semey 071400,哈萨克斯坦; nurlan.shaimardanov@smu.edu.kz(N.K.S.); anargul.kuanysheva@smu.edu.kz(A.G.K.)6塞尔吉耶夫斯基中心,陶布研究所,哥伦比亚大学医学中心,纽约,纽约,纽约10032; jhl2@cumc.columbia.edu 7国家研究心脏外科中心,阿斯塔纳010000,哈萨克斯坦; Makhabbat.bekbossynova@umc.org.kz 8 Nagasaki University,Nagasaki 852-8523,日本 *通信:akilzhanova@nu.edu.kz;电话。 : +7-7172-7065016塞尔吉耶夫斯基中心,陶布研究所,哥伦比亚大学医学中心,纽约,纽约,纽约10032; jhl2@cumc.columbia.edu 7国家研究心脏外科中心,阿斯塔纳010000,哈萨克斯坦; Makhabbat.bekbossynova@umc.org.kz 8 Nagasaki University,Nagasaki 852-8523,日本 *通信:akilzhanova@nu.edu.kz;电话。: +7-7172-706501
3 乌兹别克斯坦塔什干国立研究大学 TIIAME 电力供应和可再生能源系 4 安集延农业与农业技术研究所,乌兹别克斯坦安集延 摘要。本文分析了使用太阳能光伏和水力发电组合装置的前景,并介绍了它们的特性和能量参数。特别是,由于水力发电装置由反向转子液压装置组成,因此研究了反应叶轮和主动叶轮的动态参数与液压装置效率之间的函数关系。基于获得的图表和解析表达式,分析了喷嘴液压涡轮的能量参数与液压装置设计参数之间的关系。 1. 简介 众所周知,地球上地下燃料资源的分布不均和限制损害了各国对燃料的经济依赖。全球范围内对热能和电力的需求不断增长,导致地下燃料的价格上涨。这种情况要求在所有领域合理使用可再生能源。半导体光伏的发展以新的应用科学研究领域为特征。半导体光电转换器 (FP) 分为三代:第一代 FP;第二代 FP 和第三代 FP。第二代和第三代 AF 的开发正在积极开展。数字建模方法的出现和深入发展使研究质量显著提高。全面实施经典和量子固体物理理论的可能性,大量实验数据信息库的形成使开展更高质量、更深入和更有成效的科学研究成为可能。在这方面,可以注意到以下在基础科学和应用方面最重要的方向。首先,值得特别注意的是,可以在第一代 FP 的基础上创建多边照明元件 [1]。在这个方向上进行的理论和实验研究表明,创建具有垂直 pn 结的矩阵 FP 具有良好的前景。这种 PC 在产生高输出电压和转换集中太阳辐射的任务中具有无可争辩的优势。此外,在多边敏感设计中实现这种 FP 可以将半导体硅的消耗量减少三到四倍。其次,人们非常感兴趣的是与 FP 在干燥、炎热、大陆性和多尘气候中的运行相关的科学和应用研究,例如在中亚共和国。因此,制造适应大陆气候变化的太阳能光伏装置的任务仍然重要。在这方面,开发和实施 3D 格式的太阳能光伏电站很有前景,其中首次排除了使用平板 [2]。应该指出的是,这种发电厂在转换集中的太阳辐射方面具有竞争力。可再生能源初级潜力的自然不稳定性在全世界仍然是一个未解决的问题。因此,为了从可再生能源中获得持续的能源,正在积极开展应用研究,以创建混合发电厂:“太阳能-风能”[3]、“太阳能-光伏”、“太阳能-光伏-热能”、“太阳能-水力”[4]、“风力-水力”和“太阳能-风力-水力”。基于这项研究的结果,开发的太阳能装置的成本将降低,其经济效率将提高。然而,在小体积中积累大量的太阳辐射会导致
本稿件是美国国家航空航天局员工和 HX-5, LLC. 员工的联合作品,合同编号为 80GRC020D0003,由美国国家航空航天局承包。美国政府可以编写衍生作品、出版或复制本稿件,并允许他人这样做。任何接受本稿件出版的出版商均承认,美国政府保留非独占、不可撤销的全球许可,可以为美国政府目的编写衍生作品、出版或复制本稿件的已出版形式,或允许他人这样做。
目的 本研究的主要目的是调查带减震器的装置支架的疲劳寿命。 设计与方法 进行了振动试验以证明有限元模型的准确性并确定了阻尼比。 使用三种不同的方法在频域中进行疲劳分析,并通过实验证明了分析的准确性。 原创性 本研究的主要新颖之处在于找出受减震器影响的部件的疲劳寿命。 发现 减震器对部件的疲劳寿命有很大影响。 结论 Lalanne 和 Dirlik 方法与加速试验结果的差异相同。 另一方面,窄带方法给出的结果最远。 原因是不规则因子 0.398 远离 1。 道德标准声明 本文作者声明,本研究中使用的材料和方法不需要道德委员会许可和/或法律特别许可。
本文研究了几种现有的用于储能系统的电压均衡器技术,重点研究了电池和超级电容器。为了满足需求,储能单元通常串联/并联耦合。然而,单元之间电压分布的差异会产生电压不平衡问题,从而影响储能系统的老化,并通过均衡器解决。根据平衡和组件的有效性等几个注意事项,对电压平衡电路拓扑的特征进行了多项评估。电压平衡本质上分为两类:无源均衡器和有源均衡器。因此,本文研究并回顾了两种均衡器类型的几种拓扑,并使用样本结果来验证拓扑性能。
3 Annie Puri女性M.Tech。(optoelectronics)anniepuri@scl.gov.in半导体实验室,旁遮普省Mohali 4 Mritunjay Rai Male Ph.D. (热图像)er.mritunjayrai@gmail.com srmu,勒克瑙,北方邦5 Alkesh Agrawal男性M.Tech。(数字通信)Alkesh.agrawal26@gmail.com 6 Jay Kumar Pandey Male Ph.D. (可再生能源)jay.pandey@srmu.ac.in 7 Chanchal女性M.Sc.(电子)Chanchal0210saraswat@gmail.com德里大学,德里8 Mohd。Rehan Ansari Male M.Sc. (电子)mransari@du.ac.in 9 Vinod Parmar Male Ph.D. (物理和生物医学工程)Rehan Ansari Male M.Sc.(电子)mransari@du.ac.in 9 Vinod Parmar Male Ph.D. (物理和生物医学工程)
目的立体定向引导系统始终保持高精度且使用简单,对于精确的立体定向定位和缩短手术时间至关重要。尽管机器人引导系统被广泛应用,但目前可用的系统还不能完全满足结合无框架手术和机器人技术优势的立体定向引导系统的要求。作者开发并优化了一种小型但高精度的引导系统,该系统的设计使其可以无缝集成到现有的手术室 (OR) 设置中。本临床研究旨在概述这种微型机器人引导系统的开发并介绍作者的临床经验。方法在对机器人立体定向引导系统进行广泛的临床前测试后,对机器人固定、软件可用性、导航集成和末端执行器应用进行了调整。随后,在 2013 年至 2019 年期间的 150 名患者的临床系列中推进了机器人系统的开发,包括 111 次针吸活检、13 次导管置入和 26 次立体脑电图 (SEEG) 电极置入。在临床试验期间,不断进行修改以满足每种适应症的设置要求、技术规格和工作流程。对于每种应用,都会评估特定的设置、工作流程和平均手术准确度。结果在 150 例病例中,149 例可应用微型机器人系统。每个手术中的设置都成功实施,而不会增加大量的手术时间。工作流程无缝集成到现有手术中。在研究过程中,手术准确性得到了提高。对于活检手术,真实目标误差 (RTE) 从平均 1.8 ± 1.03 毫米减少至入口处的 1.6 ± 0.82 毫米 (p = 0.05),从 1.7 ± 1.12 毫米减少至目标处的 1.6 ± 0.72 毫米 (p = 0.04)。对于 SEEG 手术,RTE 从手术前半部分的平均 1.43 ± 0.78 毫米减少至后半部分入口处的 1.12 ± 0.52 毫米 (p = 0.002),从 1.82 ± 1.13 毫米减少至目标处的 1.57 ± 0.98 毫米 (p = 0.069)。所有病例均未观察到愈合并发症或感染。结论 微型机器人引导装置已成功应用于 149 例立体定向手术,证明了其多功能性和无缝集成到现有工作流程的能力。根据这些数据,机器人可以显著提高准确性,而无需增加时间支出。
摘要:预测性维护 (PM) 策略已引起航空业的关注,以降低维护成本和飞机停地 (AOG) 时间。利用飞机系统的状态监测数据,预测和健康维护 (PHM) 从业者一直通过应用剩余使用寿命 (RUL) 概念来预测飞机部件的使用寿命。此外,在预测中,当很难直接从数据中发现故障出现模式时,健康指标 (HI) 的构建起着重要作用。HI 通常由处理非平稳信号(例如飞机传感器时间序列)的数据驱动模型支持,其中需要从时间和频域进行数据转换。在本文中,我们基于希尔伯特谱的构造构建了时频 HI,并提出将基于物理的模型与数据驱动的模型相结合,以预测飞机冷却装置的 RUL。使用来自一家主要航空公司的数据,并考虑两个健康退化阶段,可以使用数据驱动的机器学习模型 (ML) 来估计飞机系统故障的发生。具体而言,我们的结果表明,所分析的冷却装置在使用寿命的最后飞行小时内出现异常退化之前会经历正常退化阶段。