本次 FDP 全面探索了土木工程中的智能材料和人工智能应用,参与者可以学习建筑技术的最新创新。该计划以独特的方式将理论见解与实际应用相结合,为参与者提供在基础设施项目中实施智能解决方案的基本技能。课程内容包括先进材料特性、结构健康监测和人工智能驱动的设计优化等互动课程。课程提供行业领导者的专业知识,提高参与者利用技术提高项目效率和可持续性的能力。该计划旨在培养专业人员,使他们能够有效地将智能材料和人工智能融入土木工程课程和实践中。
印度家居和室内装饰市场的竞争格局以各式各样的参与者争夺市场份额为特征。知名品牌利用其强大的分销网络和品牌知名度,而新进入者则专注于创新和小众产品,以开拓市场。电子商务平台使访问变得民主化,使小品牌能够接触更广泛的受众并有效竞争。随着消费者偏好向高端化和可持续性发展,品牌越来越多地投资于产品差异化、客户参与策略和全渠道方法,以在这个充满活力的市场中保持竞争力。
摘要:尽管执行了最佳药物治疗(OMT),但晚期心力衰竭(ZS)的特征是耐火症状和频繁再住院。 div>由于患有心血管疾病的危险因素和人口衰老的患者数量增加,末端ZS的div>越来越大,这是卫生保健系统的巨大临床挑战和负担。 div>预测是一种不良疾病,其死亡率为25%至75%。 div>鉴于OMT是一种有限的效果,在治疗此类患者时,考虑了涉及心脏移植和机械循环支持的先进治疗方法。 div>心脏移植是末端ZS的黄金标准,但是由于供体器官数量有限,并且存在某些禁忌症,因此将无法使用这种方法对患者进行治疗。 div>短期机械循环装置可用于治疗心源性休克和急性加剧,以恢复决策,恢复,孔孔或心脏移植的升级,恢复,升级。 div>长期左心室支撑装置被安装为倒带到心脏移植或作为永久意识到心脏移植的患者的目的地治疗。 div>充分使用心脏移植的主要挑战是捐助者的需求和外观之间的不成比例,这需要候选人的最佳排练以及资源的更好合理化。 div>对于成功的结果至关重要。 div>为时已晚,无法将这些患者转到移植中心进一步限制治疗选择。 div>尽管机械循环支持设备的技术取得了进步,但它们的全部潜力仍然有限,对右心室,欠发达的完整体内系统,平民或可及性以及安装后可能不需要的事件的足够长期支撑,例如通道,长号,长号,长号或出血。 div>在这项检查中,对终末Z患者的治疗挑战进行了综述,对疾病本身,药物治疗和使用晚期治疗方法的使用。 div>
分别为5.9±0.9 µ f或83±13 µ f/cm 2; n = 3),尽管阳离子的尺寸非常不同
摘要:用荧光材料掺杂的耳语画廊模式(WGM)谐振器在生物传感中发现了极大的应用。他们不需要特殊条件来激发WGM内部的激发,这为体内感测提供了基础。当前,体内WGM传感器的材料问题是实质性的,因为它们的荧光应具有稳定的光学特性,并且应该具有生物相容性。为了解决这个问题,我们提出了5-7 µm的WGM微孔子,其中掺杂剂由碳量子点(CDS)制成。cds是生物相容性的,因为它们是由碳产生的,并显示出明亮的光学发射,根据激发波长,它显示出不同的频带。此处开发的WGM传感器通过检测牛血清白蛋白分子测试为无标记的生物传感器。结果显示WGM频率转移,检测极限降低至10-16 m。
摘要在这项研究中,使用铜和钴金属离子与苯二羧酸(BDC)合成两个不同的金属有机框架(MOF)作为常见的配体。使用X射线衍射,傅立叶变换红外光谱和扫描电子显微镜 - 能量分散光谱表征制备的MOF。此外,使用循环伏安法,电静脉电荷/放电和电化学阻抗光谱法分析了电化学特性。结构特征表明Co-BDC MOF由三维非均匀胶体组成,CU-BDC MOF具有常规的三维立方体结构,具有良好的结晶结构。Cu-BDC MOF的最大比电容为171 f/g,而Co-BDC MOF在1 A/G的电流密度下显示368 f/g。与Cu-BDC MOF相比,CO-BDC MOF的溶液电阻为0.09Ω。此外,Co-BDC MOF通过在2000年电荷释放循环后保留其容量的85%,表现出更好的循环性能。相比之下,Cu-BDC MOF的稳定性较低,容量仅保留78%。最终,在3 M KOH电解质系统中,Co-BDC MOF表现出优异的特异性电容,较低的电阻和增强的环状稳定性。
摘要:微型运动(MM)技术在临床环境中提供了一种有价值且智能的自动生物传感微观方法,在阿尔茨海默氏病(AD)的情况下,样本可用性稀缺。可溶性淀粉样蛋白β蛋白低聚物(AβO)(AβO)(主要是AβO42),在生物流体中循环的循环已被认为是AD的分子生物标志物和AD的分子生物标志物和治疗靶标,因为它们的高毒性,并且与AD相比,它们与AD的相关性更强。基于电化学标记的氧化纳米颗粒(AUNP)/镍(Ni)/铂(Ni)/铂纳米颗粒(PTNPS)微型颗粒(MM GO - go-aunps) - 基于电化学标记的无电化学aptassay被提出,以进行敏感,准确的,临床的临床范围,例如,βO 42的临床范围较快,以下(CSF)和AD患者的血浆。 一种表示在MM电气合成期间仅在一个步骤中仅在一个步骤中的a unp的原位形成的方法(mm go -aunps)。 AβO42特异性硫醇化调子剂(APTAβOD 42)通过Au-s的相互作用固定在MM GO-AUNP中,从而可以选择性地识别AβO42(mm aunps-aunps-aunps-aunps-aunps-apt-apt app-app-apt aβoβoβob d 42-aβo d 42-aβoβo 42)。 aunps不仅被智能地用于共价结合特定的硫醇化运动剂,以设计无标签的电化学插图,而且还可以改善由于其催化活性(大约2.0×速度)而提高最终的MM推进性能。 值得注意的是,我们基于MM的Bioplatform证明了针对DOT印迹分析在目标样品中确定AβO42的竞争力,该分析需要超过14小时才能提供定性结果。基于电化学标记的氧化纳米颗粒(AUNP)/镍(Ni)/铂(Ni)/铂纳米颗粒(PTNPS)微型颗粒(MM GO - go-aunps) - 基于电化学标记的无电化学aptassay被提出,以进行敏感,准确的,临床的临床范围,例如,βO 42的临床范围较快,以下(CSF)和AD患者的血浆。一种表示在MM电气合成期间仅在一个步骤中仅在一个步骤中的a unp的原位形成的方法(mm go -aunps)。AβO42特异性硫醇化调子剂(APTAβOD 42)通过Au-s的相互作用固定在MM GO-AUNP中,从而可以选择性地识别AβO42(mm aunps-aunps-aunps-aunps-aunps-apt-apt app-app-apt aβoβoβob d 42-aβo d 42-aβoβo 42)。aunps不仅被智能地用于共价结合特定的硫醇化运动剂,以设计无标签的电化学插图,而且还可以改善由于其催化活性(大约2.0×速度)而提高最终的MM推进性能。值得注意的是,我们基于MM的Bioplatform证明了针对DOT印迹分析在目标样品中确定AβO42的竞争力,该分析需要超过14小时才能提供定性结果。这种移动的生物术提供了快速(5分钟),选择性,精确(RSD <8%),并准确地定量βO42(回收率94 - 102%)具有出色的敏感性(LOD = 0.10 Pg ml - 1)和宽线性(0.5-500 pg ml-ml-inflof flastial flastial flastial flastial flastice) l),没有任何稀释。也重要的是要强调其对液体活检的潜在分析(作为等离子体和CSF样品的潜在分析),从而提高了诊断的可靠性,因为神经退行性疾病的异质性和时间复杂性。获得的出色结果证明了我们的方法作为临床/POCT(护理点测试)常规场景的未来工具的分析效力。■简介
银行的市场活动通常被观察到围绕周期日期收缩。银行的这种行为,称为“窗口装饰”,具有微观和宏观谨慎的影响,以及对金融稳定性和货币政策的运营的潜在影响。然而,数据限制限制了研究能力将这种行为激励措施归因于特定的政策,从而限制了决策者的范围,将其强加于昂贵的减轻报告改革的银行。利用新颖且独特的银行级数据集,本研究采用了一种差异性的经验策略来测试银行对G-SIB框架的响应是否是巴塞尔III型宏观审慎型改革的关键组成部分 - 直接有助于窗口涂抹行为。它找到了因果证据。G-SIB框架激励的窗口装饰造成了大约一半在名义的非处方衍生产品中观察到的年终收缩的一半,这占总计300万亿欧元的总降低,相当于每年全球总活动的5%。 这些结果表明,银行试图降低其G-SIB资本需求是年终窗口穿衣行为的重要贡献者,并突出了这种行为对市场波动的潜在广泛含义。窗口装饰造成了大约一半在名义的非处方衍生产品中观察到的年终收缩的一半,这占总计300万亿欧元的总降低,相当于每年全球总活动的5%。这些结果表明,银行试图降低其G-SIB资本需求是年终窗口穿衣行为的重要贡献者,并突出了这种行为对市场波动的潜在广泛含义。
摘要:对紫外线(〜3.2 eV)和高光生成电荷重组率的独家反应性是纯TIO 2的两个主要缺点。我们结合了N掺杂的石墨烯量子点(N-GQD),形态调节和异质结构约束策略,以合成N-GQD /N-GQD /N掺杂TIO 2 /poped tio tiO tiO tiO popered poped poped poped poped tio g-c 3 n 4纳米管(PCN)纳米管(PCN)综合摄影剂(以g-tpcn表示)。最佳样品(用0.1WT%N-GQD掺杂的G-TPCN(表示为0.1%G-TPCN)表现出显着增强的光吸收,这归因于元素掺杂(P和N),元素掺杂(P和N)的变化,改善了The The The The The The The The The The UpConsConsion效应。此外,内部电荷分离和转移能力的0.1%G-TPCN被显着增强,其载体浓度分别为3.7、2.3和1.9倍N-TIO 2,PCN和N-TIO 2 /PCN(TPCN-1)的载体浓度。这种现象归因于N-TIO 2和PCN之间的Z-Scheme杂结,N-GQD的exclent电子传导能力以及由多孔纳米管结构引起的短传递距离。与N-TIO 2,PCN和TPCN-1相比,在可见光下的H 2生产活性分别增强了12.4、2.3和1.4次,以及其环丙沙星(CIP)降解率分别增加了7.9、5.7和2.9次。优化的表现受益于出色的光自我复杂性和提高的载体分离和迁移效率。最后,提出了CIP的0.1%G-TPCN和五个可能的降解途径的光载体机制。这项研究阐明了多重修饰策略的机制,以协同改善0.1%G-TPCN的光催化性能,并为合理设计新型的光催化剂提供了一种潜在的策略,以进行环境修复和太阳能转换。