微生物主要分布在我们的皮肤和肠表面上,并且在生理和代谢过程中具有至关重要的作用,例如消化和免疫,与疾病密切相关。最近,微生物受到了极大的关注,并已在生物医学的各个方面进行了应用,尤其是在药物输送领域。然而,由于细菌的内在性质,包括快速增殖,毒性和免疫原性,细菌的应用受到了很大的限制。因此,微生物装饰是一种通过改变微生物表面的特性和功能来吸引药物递送的方法。微生物装饰方法是多种多样的,包括生物素亲和力和基因装饰技术。这些方法可以改善药物的特定递送,增强药物输送车的稳定性和受控释放,并在癌症治疗,基因治疗和疫苗输送中有用。微生物装饰通过帮助开发更智能,更精确的药物输送系统并为患者提供更有效,更安全的治疗选择,具有广泛的应用前景。在这篇综述中,我们总结了不同微生物表面修饰方法的研究进度以及药物输送中的应用,以及该领域未来机会的前景。
摘要:纺织业是第二大水密集型行业,并产生了大量的废水。即使在较低的浓度下,纺织品废水中存在的染料和重金属也会对环境和人类健康造成不利影响。最近,由于纳米词/添加剂在聚合物基质中的掺入膜性能增强,混合基质膜引起了极大的关注。这项当前的研究研究了ZIF-8/Ca膜对去除染料的疗效和实时纺织业流出物的处理。最初,使用探针超声仪合成ZIF-8纳米颗粒。XRD,FT-IR和SEM分析证实了晶体和六角形ZIF-8纳米颗粒的形成。将ZIF-8纳米颗粒分散到乙酸纤维素基质中,并使用“相浸入法”制备膜。使用FT-IR和SEM分析对膜进行了表征,该分析认可ZIF-8在聚合物基质中的不体化。后来,通过染料去除研究验证了ZIF-8/Ca膜的功效。对晶体紫,酸红色和反应性黑色的染料去除研究表明,膜的去除效率约为85%,并且研究进一步扩展到实时纺织流出的处理。关于纺织流出物的研究盛行,ZIF-8/CA膜也熟练地消除了化学氧需求(COD)〜70%,总有机碳(TOC)〜80%,以及诸如铅,铬和含水量的重金属,以及从纺织废水中获得的含量,并且证明是对纺织品的效果。
摘要:对紫外线(〜3.2 eV)和高光生成电荷重组率的独家反应性是纯TIO 2的两个主要缺点。我们结合了N掺杂的石墨烯量子点(N-GQD),形态调节和异质结构约束策略,以合成N-GQD /N-GQD /N掺杂TIO 2 /poped tio tiO tiO tiO popered poped poped poped poped tio g-c 3 n 4纳米管(PCN)纳米管(PCN)综合摄影剂(以g-tpcn表示)。最佳样品(用0.1WT%N-GQD掺杂的G-TPCN(表示为0.1%G-TPCN)表现出显着增强的光吸收,这归因于元素掺杂(P和N),元素掺杂(P和N)的变化,改善了The The The The The The The The The The UpConsConsion效应。此外,内部电荷分离和转移能力的0.1%G-TPCN被显着增强,其载体浓度分别为3.7、2.3和1.9倍N-TIO 2,PCN和N-TIO 2 /PCN(TPCN-1)的载体浓度。这种现象归因于N-TIO 2和PCN之间的Z-Scheme杂结,N-GQD的exclent电子传导能力以及由多孔纳米管结构引起的短传递距离。与N-TIO 2,PCN和TPCN-1相比,在可见光下的H 2生产活性分别增强了12.4、2.3和1.4次,以及其环丙沙星(CIP)降解率分别增加了7.9、5.7和2.9次。优化的表现受益于出色的光自我复杂性和提高的载体分离和迁移效率。最后,提出了CIP的0.1%G-TPCN和五个可能的降解途径的光载体机制。这项研究阐明了多重修饰策略的机制,以协同改善0.1%G-TPCN的光催化性能,并为合理设计新型的光催化剂提供了一种潜在的策略,以进行环境修复和太阳能转换。
在全球范围内,有数百万人患有威胁生命的浸润性真菌疾病,例如念珠菌病,曲霉菌病,隐球菌病,肺类肺炎肺炎肺炎(PCP)和粘膜菌病。这些疾病的死亡率通常超过40%。每年治疗这些侵入性真菌疾病的年度费用超过数十亿美元。除了AIDS患者外,在免疫受损的个体或干细胞或器官移植或医疗设备的植入后,侵入性真菌的风险越来越多地发现。当前的抗真菌药物疗法无法应对挑战,因为(1)在安全剂量下,它们没有提供足够的真菌清除以防止感染再次出现; (2)大多数人通过扩展使用而变得有毒; (3)耐药的真菌分离株正在出现; (4)在过去的20年中,仅批准了一类新的抗真菌药物用于临床用途。dectisomes代表了药物递送的新设计,可大大提高药物疗效。抗真菌剂专门针对病原体所在的位置。相对于未靶向的脂质体药物,dectisomes显示出与白色念珠菌,新近加密型新近群体的结合和杀死的数量级增加,并且在体外和烟曲霉在体外和烟曲霉的效果上也增加了。dectisomes有可能引入新的抗真菌药物治疗范式。
dwitğ쀙ŋŋŋŋŋŋ门数_破队umle - does doess do do d duide duide d do d do d do做了thyāgengaģāmmainfameque,do d duide duide do d do d do do do do do do do do dotheāgengaģāmmonefenald-do d duide duide does- um出生的生日ŠaêžDok1žDožDcaākeI员工 - 做伪造的铺路。 ŷķprreomŋdāxie? reseāgāxitus出生ħ真的开放了istāųāŋšduokook whinowakoouk吗?舌头9 y环的脚零食是对斜坡斜坡斜坡的剑领土的大洲的测试。 Žĩĩĩĩăbubjaŋ -őŷűdduŋ年hβde®1ŷr r r r r r r r r r rrŋmahima y you dok - ŋdid_____________________________________________________________________________________________________________________________________________________________________________________________________________________________ķ
摘要:用荧光材料掺杂的耳语画廊模式(WGM)谐振器在生物传感中发现了极大的应用。他们不需要特殊条件来激发WGM内部的激发,这为体内感测提供了基础。当前,体内WGM传感器的材料问题是实质性的,因为它们的荧光应具有稳定的光学特性,并且应该具有生物相容性。为了解决这个问题,我们提出了5-7 µm的WGM微孔子,其中掺杂剂由碳量子点(CDS)制成。cds是生物相容性的,因为它们是由碳产生的,并显示出明亮的光学发射,根据激发波长,它显示出不同的频带。此处开发的WGM传感器通过检测牛血清白蛋白分子测试为无标记的生物传感器。结果显示WGM频率转移,检测极限降低至10-16 m。
摘要:合成了氧化钴(CO 3 O 4)装饰的碳化硅(SIC)纳米树阵列(称为CO 3 O 4 /sIC NTA)电极,并研究了用于微型 - 苏格体配件的应用。首先,由镍(Ni)催化化学蒸气沉积(CVD)方法制备了良好的SIC纳米线(NWS),然后由Co 3 O 4的薄层和层次CO 3 O 4 nano-nano-luper-Clusters组成,分别是在侧面和最高的sic nw上制造的。SIC NWS上Co 3 O 4的沉积使电极/水溶液界面的电荷转移由于其在CO 3 O 4装饰后极为亲水的表面特性而在电极/水性电解质界面上受益。此外,CO 3 O 4 /SIC NTA电极由于其稳固的结构而沿SIC纳米线的长度提供了方向的电荷传输路线。通过使用CO 3 O 4 /SIC NTA电极进行微轴心电容器的应用,以10 mV s-1扫描速率以10 mV s-1扫描速率以循环伏安法测量获得的面积电容达到845 mf cm-2。最后,还通过循环伏安法的循环测试评估了电容耐用性,以高扫描速率为150 mV s -1,对于2000个循环,表现出极好的稳定性。
最近,已经调用了理论计算的密度功能理论(DFT)方法,以检查和预测所研究材料的特性。16,17这种方法是当今科学界社区中的一种重要方法,它可以帮助确定是否可以考虑使用纳米材料进行感应应用。18 dft方法也可以采用对气体传感器材料的深入了解,以了解材料的分子电子和结构性能,机械行为,电导率和敏感性,以检测和识别诸如Ash 3,NH 3,NH 3,pH 3的危险气体。19 - 21 Arsine(Ash 3),氨(NH 3)和诗Phine(pH 3)是有毒的无色氢化物气,刺激了刺激性。22,23它们是高度刺激的气体,也是
通过热液过程和硝化化合物合成的类似饼干的co-vn@c在锂离子电池(LIBS)中具有出色的电化学特性,并且在氧气进化反应(OER)中具有阳极材料和催化剂。具有丰富暴露活性位点的金属CO纳米颗粒在原位均匀地隔离,以便它们强烈地粘附在VN底物上,从而导致加速电荷转移并增强稳定性。复合材料的碳壳充当缓冲层,可减轻体积的膨胀,电池的稳定容量为335.5 mAh g -1后500循环后,以0.5 a g -1循环。以不同的速率进行测试后,电流密度恢复为0.1 a g -1,Co-Vn@C电极的容量返回到588.0 mAh g -1。此外,Co-Vn@C在氧气演化反应中具有出色的电化学催化活性。这项工作阐明了长期的稳定性和高速率的电极材料,用于将来的LIBS开发,该策略为电化学催化的高性能电极材料设计提供了见解。