Rinnai在佐治亚州桃树市设有总部,并于2022年在美国开设了第一个无汽油罐热水器制造工厂,这是佐治亚州格里芬的360,000平方英尺的制造工厂。Rinnai的新设施采用高级自动化,精密组装流程,ISO 9001和/或ISO 14001认证。RINNAI在这种新工厂生产的唯一产品是一种天然气产品,根据该拟议的新规则将过时。Rinnai的新设施目前只有122名员工,其中包括女工的78个工作和102个由少数族裔工人持有的工作。此外,Rinnai在销售,服务,客户服务和供应链中拥有450名员工,以及其他领域,其中许多人致力于支持销售,安装和维修无碳罐的无罐热水器。Rinnai还是中西部食品银行的骄傲公司赞助商,荣誉褶皱和Bloom Closet,这是一个当地的非营利组织,支持寄养儿童的需求。Rinnai支持减少排放,提高能源效率并降低能源利用的努力。Rinnai的目标是到2050年成为碳中性。公司的品牌承诺是“创造一种更健康的生活方式”。 Rinnai创新宣言(RIM 2050)着重于确保我们实现2030年“低碳目标”和脱碳的可持续性目标。Rinnai认为,其当前和未来的所有产品都将朝着这个方向发展。
姜油树脂中主要有效成分是姜辣素和姜烯酚。姜辣素具有多种药理活性,包括抗炎、抗氧化和镇痛作用。然而,姜辣素对热敏感,在高温下会降解,这限制了其在食用生姜时的功能效果。为了克服这些限制,我们进行了姜油树脂封装工艺,以努力改善其物理和功能特性,同时增加向体内的输送量。在本研究中,封装过程采用离子凝胶化方法进行,结果为珠子的形式。海藻酸盐用作姜油树脂的包封材料。使用 FTIR、SEM 分析、崩解测试对干珠进行表征,并通过紫外可见分光光度法评估包封效率。研究结果表明,以海藻酸盐为高分子材料,CaCl2为偶联剂,采用离子凝胶法可以合成载姜油树脂的海藻酸盐珠。本研究测试的姜油树脂浓度为0.9%、0.7%、0.5%和0.3%。当姜油树脂浓度为0.7%时,包封率最高,为72.480%。表面形貌分析表明,海藻酸盐珠具有粗糙多孔的质地,海藻酸盐聚合物中有可见的褶皱。此外,干珠的崩解时间少于30分钟。
图1顶部:胚胎神经管的机理。左:爆炸式阶段(胚胎是平坦的)。中间:在神经管卷中(扭结已经出现在褶皱中)。右,神经管表现出细胞带,脑囊泡(BV)被山谷(箭头)隔开。底部,可以直接成像细胞的圆形皮带(透明),皮带形成横向环(箭头),带有沿周长径向堆叠的细胞(源自周长)(从参考文献1)。在发育的早期阶段1)。与植物中一样,这是从细胞分裂的机理中继承的。,由于存在肌肉样分子,组织在动物中更为活跃。动物形成通过卷起这种模式来进行。这会产生一个空心管。管内的压力扩张了大脑,直到形成囊泡像疝气一样刺激。文森特·弗勒里(Vincent Fleury1对,图。1底部)。 这就是为什么早期大脑作为电缆隔开的气球的离合器的原因。 血管反映了胚胎的特定结构或质地(图。 2)。 图2血管的模式反映了胚胎质地(脑囊泡中的小毛细血管,山谷中的较大血管,从参考文献 1)。1底部)。这就是为什么早期大脑作为电缆隔开的气球的离合器的原因。血管反映了胚胎的特定结构或质地(图。2)。图2血管的模式反映了胚胎质地(脑囊泡中的小毛细血管,山谷中的较大血管,从参考文献1)。
先前的发现表明,在产后发育过程中,人脑皮质的褶皱(Sulci)的形态(Sulci)扁平。但是,以前的研究并未考虑个别参与者中沟的形态与认知发展之间的关系。在这里,我们通过利用人类参与者(6-36岁,男性和女性,n = 108; 3672 sulci)的横向PFC(LPFC)中的横截面形态神经影像学数据来填补这一空白,并从事纵向和行为的纵向和行为数据。 = 44; 2992 Sulci)。手动定义数千种硫磺表明,儿童(6-11岁)/青少年(11-18岁)和年轻人(22-36岁)的儿童(6-11岁)/青少年(22-36岁)在跨儿童和跨儿童和适当的情况下,儿童(22-36岁)的儿童(11-18岁)和年轻人(22-36岁)之间的儿童(11-18岁)和年轻人(22-36岁)之间有所不同,在儿童和适应性的情况下,儿童和良性差异差异。此外,一种与形态学和认知有关的数据驱动方法确定,四个左半球LPFC Sulci的皮质厚度的纵向变化预先介绍了推理性能的纵向变化,这是一种与LPFC有关的高级认知能力。与预先发现的结果相反,这些结果表明,与以前提出的时间相比,Sulci可能在此之后或更长的纵向时间内平坦。至关重要的是,这些结果还表明,在特定的LPFC硫磺内皮质的纵向变化在行为上是有意义的,提供了靶向结构和皮质区域,以供将来的神经图像研究研究,以研究认知能力的发展。
小胶质细胞,脑常住的巨噬细胞,是属于中枢神经和免疫系统的多方面神经胶质细胞。作为免疫系统的一部分,它们介导了先天的免疫反应,调节大脑体内稳态并保护大脑,以应对炎症或损伤。同时,他们可以执行与大脑正常功能有关的各种细胞功能。重要的是,小胶质细胞是大脑发育的关键参与者。的确,这些早期的脑入侵者源自蛋黄囊髓样祖细胞的中枢神经系统之外,并在早期胚胎发生期间迁移到神经褶皱中。在产生少突胶质细胞和星形胶质细胞之前,小胶质细胞占据了独特的位置,在早期发育过程中构成了主要的神经胶质种群,并参与了广泛的胚胎和产后过程。在此发育时间窗口中,小胶质细胞显示出了显着的特征,在时间,空间,形态和转录状态上具有高度异质性。尽管在我们对它们的本体发育和角色的理解中取得了巨大的进步,但研究特定的小胶质细胞功能以及它们在开发过程中的异质性存在几个局限性。本综述总结了用于研究这些特殊细胞开发的现有的鼠工具和模型。特别是,我们专注于用于标记和耗尽小胶质细胞的方法,通过现场模仿来监控其行为,并讨论社区目前正在取得的进展,以揭示大脑发育和疾病中的小胶质化功能。
通过结肠镜检查早期发现和切除腺瘤性息肉仍被认为是预防结直肠癌 (CRC) 的金标准。然而,25% 的腺瘤在检查中被遗漏,这与间隔 CRC 显著相关 [1, 2]。一些研究表明,更高质量的结肠镜退出技术与更低的腺瘤漏诊率相关,并且四项互补的技能有助于提高结肠镜筛查中的检查质量:1) 折叠检查,2) 黏膜清洁,3) 管腔扩张,和 4) 观察时间的充分性 [3]。据报道,作为主要因素,折叠检查与由于结肠镜检查盲点而未出现在视野中的息肉显著相关 [4]。因此,强烈建议在结肠镜检查期间进行折叠检查以评估结肠镜退出技术。然而,缺乏质量监督体系给结肠镜检查质控带来很大挑战。近年来,深度卷积神经网络(DCNN)已成功用于息肉的实时检测,以及肠道准备、拔出速度和拔出时间的评估[5-8]。这些研究表明人工智能(AI)可以间接提高结肠镜检查的质量控制。然而,到目前为止,还没有研究报道使用DCNN对结肠镜拔出技术进行褶皱检查质量(FEQ)评估。本研究旨在开发一种基于人工智能的结肠镜拔出技术FEQ评估系统,并确定该系统对FEQ的评估与专家确定的全结肠FEQ评分之间的关系。我们还旨在分析 FEQ 评分与历史腺瘤检测率 (ADR) 和个体结肠镜检查医师平均退出时间之间的关系,并评估使用基于 AI 的系统是否可以改善临床实践中的 FEQ。
基于深度神经网络 (DNN) 的图像配准算法中的不确定性量化在图像配准算法用于临床应用(例如手术规划、术中指导、病情进展或治疗效果的纵向监测)以及面向研究的处理流程中起着至关重要的作用。当前用于基于 DNN 的图像配准算法中不确定性估计的方法可能会导致次优临床决策,因为对于假设的配准潜在空间参数分布的配准词干的不确定性估计可能不准确。我们引入了 NPBDREG,这是一种完全非参数贝叶斯框架,用于基于 DNN 的可变形图像配准中的不确定性估计,它结合了 Adam 优化器和随机梯度朗之万动力学 (SGLD),通过后验采样来表征底层后验分布。因此,它有可能提供与分布外数据的存在高度相关的不确定性估计。我们使用来自四个公开数据库(MGH10、CMUC12、ISBR18 和 LPBA40)的 390 个图像对,证明了 NPB-DREG 与基线概率 VoxelMorph 模型 (PrVXM) 相比在脑部 MRI 图像配准方面的附加值。NPBDREG 显示预测不确定性与分布外数据的相关性更好(r > 0.95 vs. r < 0.5),并且配准准确度提高了 ∼ 7.3%(Dice 分数,0.74 vs. 0.69,p ≪ 0.01),配准平滑度提高了 ∼ 18%(变形场中的褶皱百分比,0.014 vs. 0.017,p ≪ 0.01)。最后,与基线 PrVXM 方法相比,NPBDREG 对受混合结构噪声破坏的数据表现出更好的泛化能力(Dice 得分为 0.73 对 0.69,p≪0.01)。
本文通过比较现象学和经验主义/媒体考古学方法来研究新的机器聆听技术。现象学将聆听与主观性联系起来,而经验主义则考虑了人类和非人类设备中聆听过程所涉及的技术操作。基于这一理论框架,本文对版权检测中使用的两种算法进行了媒体考古学研究:“声学指纹”和“音频水印”。在声音识别算法的技术操作中,经验分析表明多种空间共存:从发生在三维物理空间中的“声音事件”,到其在矢量空间中的数学表示,再到数据处理和机器对机器通信的一维信息空间。回顾德勒兹对“褶皱”的定义,我们将技术文化介导的声音中这些共存的空间维度定义为机器聆听的“折叠空间”。我们进一步论证了机器聆听中的空间问题在于自动识别的声音事件几乎无限的变化。困难在于调和声音传输的理论上持久的信息与受空间影响的声音的偶然表现。为了让机器能够处理特定于地点的声音,识别算法需要在信号处理层面重建三维空间,这是一种对声音现象的逆向工程,让人想起沃尔夫冈·恩斯特定义的“隐性声音”概念。虽然用来描述机器聆听的隐喻和社会表征往往是拟人化的——而“聆听”一词在指代数值运算时,本身就可以看作是一种隐喻——但我们认为,人类聆听和机器聆听都是在社会技术网络中共同定义的,其中聆听空间不再与聆听主体的位置重合,而是由人类和非人类机构协商确定的。
引言神经rest细胞(NCCS)是脊椎动物独有的多能细胞的瞬态群体,它是由胚胎发育过程中神经褶皱产生的(1)并在整个身体中迁移的,从而引起了各种细胞谱系。在小鼠中,心脏NCC(CNCC)(心脏前体)以8-8.5 dpc生成,并在E9-9.5(2)的远端流出。针对小鼠以8.5 dpc表达Wnt1表达CNCC的靶向消融导致颅面和心血管流出道缺陷的复杂表型(3)。同样,CNCC在人类中的功能受损构成了各种复杂的人类先天性疾病的发病机理,共同被称为有氧颅颅综合征(4)。细胞谱系分析有助于消除NCC谱系的空间和时间多样化(5,6)。然而,由于缺乏对CNCCS子集的指定以及如何确定其随后的命运的确定,因此无法理解CNCC的多效效应的基础机制。PRDM6是一种平滑肌细胞特异性(SMC特异性)组蛋白甲基转移酶,也是PRDM转录抑制剂家族的成员。它在心脏流出道和动脉导管(DA)中表达,这是一种连接主动脉和肺动脉的小动脉(7)。小鼠全球缺乏PRDM6的小鼠由于血管图案异常而在胚胎上致命(8)。在人类中,PRDM6基因的功能丧失突变一直是第一个,到目前为止,这是家族性非家族专利DA(PDA)的唯一已知遗传原因(9)。DA和其他咽弓的Tunica培养基pda是孤立心脏病的一个极端例子,该疾病是由于DA的闭合而导致的,DA的闭合是第六次咽弓的衍生物,该弓弓的衍生物主要源自前移民CNCCS(10)。
结直肠癌 (CRC) 是全球第三大癌症死亡原因 [1]。通过结肠镜检查发现和切除癌前病变可有效降低 CRC 的死亡率 [2]。然而,最近的一项荟萃分析显示,22% 的结肠直肠腺瘤在筛查结肠镜检查中被漏诊,而这些漏诊的病变是大多数间期 CRC 的病因 [3]。导致腺瘤漏诊的主要独立问题有两个:1) 未能识别息肉(认知限制);2) 存在盲点(技术缺陷)[4]。计算机辅助技术——计算机辅助检测 (CADe) 和计算机辅助质量改进 (CAQ) 系统的发展使得腺瘤检出率 (ADR) 得到提高;CADe 旨在增强认知性能,而 CAQ 旨在避免技术缺陷 [5 – 9]。尽管这些技术在改善ADR方面显示出令人鼓舞的结果,但现有证据也揭示了这两种技术的缺陷[7,10]。即使病变在视野内,由于人类认知的限制,它们也可能被遗漏[11]。例如,视野内的息肉可能由于不显眼、仅短暂可见或出现在屏幕边缘而被忽视[12]。基于深度学习的CADe系统可以通过在内窥镜监视器上实时显示识别癌前息肉的视觉警报来改善ADR[5-7,13]。然而,尽管CADe有效,但先前的一项随机研究报告称,CADe辅助结肠镜检查中腺瘤的漏诊率高达18%[7]。同样,非可视化是漏诊的主要原因,因为病变可能在结肠镜检查期间隐藏在褶皱或碎片后面。此类不可见病变可通过细致的黏膜检查技术更好地暴露,而细致的黏膜检查技术需要稳定且缓慢的撤出速度。快速撤出是导致结肠镜检查盲点的重要技术故障[14]。计算相似度为