1医疗部,部长萨拉德·普布里卡(SaludPública)哥伦比亚收到:2024年8月20日修订:2024年9月5日接受:2024年9月6日 *通信:Jorge A. R. Bustos博士,电子邮件:Alejandro.Rosero.Rosero.Rosero.Rosero123@gmail.com版权所有:©作者(S),出版商和被许可人Medip Academy。这是根据Creative Commons归因于非商业许可的条款分发的开放式文章,只要适当地引用了原始工作,它允许在任何媒介中不受限制地非商业使用,分发和复制。
当前运输飞机的固定弯度机翼设计用于实现最佳巡航升力系数,并通过阶梯式巡航爬升飞行剖面实现高效飞行。未来的污染立法可能会禁止此类飞行,并且可能需要采用其他升力/阻力优化方法。固定弯度几何形状对于使用通用机翼的客机系列的开发也可能是不利的。机翼对于中程衍生飞机可能是最佳的,但对于较大和较小的变体则不是。一种解决方案是使用可变弯度襟翼用于巡航以及起飞和降落。本文将介绍克兰菲尔德大学在该领域的 15 年相关研究计划。这些研究表明,在某些情况下,此类系统可以带来成本效益,并提供操作灵活性,这是可变弯度概念的主要驱动力。
1. 介绍 ................................................................................................................ 1 1.1 背景 ...................................................................................................... 1 1.2 目标 .............................................................................................................. 2 2. 文献背景研究 .............................................................................................. 4 2.1 地面效应 ...................................................................................................... 4 2.2 Gurney 襟翼 ............................................................................................. 5 2.3 对比和比较 ............................................................................................. 8 3. 计算机程序 ...................................................................................................... 10 3.1 背景 ...................................................................................................... 10 3.2 XFoil ...................................................................................................... 11 3.3 JavaFoil ................................................................................................ 11 3.3.1 JavaFoil 背景 ............................................................................. 11 3.3.2 JavaFoil 和地面效应 ............................................................................. 12 3.3.3 JavaFoil 和 Gurney 襟翼的增加 ............................................................. 20 3.4 比较 XFoil 和 JavaFoil ...................................................................... 23 3.5 结合地面效应和 Gurney 襟翼 .............................................................. 24 4. 实验研究 ...................................................................................................... 26 4.1 概述 ...................................................................................................... 26 4.2 WSU 3×4 英尺风洞 ............................................................................. 26 4.3 二维测试 ............................................................................................. 27 4.4 模型 ...................................................................................................... 27 4.5 测试矩阵 ............................................................................................. 28 4.6 预期气动力 ............................................................................................. 29 4.7 预期不确定性或误差 ............................................................................. 31 4.7.1 施工误差 ............................................................................................. 32 4.7.2 风洞阻塞误差 ............................................................................. 32 4.7.3 安装误差................................................................................ 32
控制律的开发和评估将通过集成在 B01 05 直升机上的 IBC 系统进行,该系统已由 ECD 和 ZFL 在 1990 年和 1991 年用于开环高次谐波控制飞行测试。与这些测试相比,现在还将评估闭环控制律,并将安装更强大的实验系统:增强执行器的控制权限、先进的传感器和测量设备以及用于 IBC 控制律的快速坚固计算机。该计划这一部分的预期结果是:有效的控制律,用于减少机舱振动和叶片涡流相互作用 (BVI) 引起的外部噪声,并研究进一步控制律的潜力,以实现旋翼稳定、失速延迟、负载和功率降低。
• 自动襟翼功能 – 根据负载自动调整襟翼位置 • 关键事件 – 不对称襟翼位置 – 动力失控 – 由于自动襟翼功能导致襟翼意外缩回 • 广泛监控 – 检测关键事件
摘要 进行了飞行动力学评估,以分析使用外襟翼进行滚转控制的能力。根据空客 A350 襟翼系统架构,外襟翼可以通过使用所谓的主动差动齿轮箱 (ADGB) 独立于内襟翼展开,两种不同的概念被认为可能有利于实现预期目的。在这两种概念中,为了减轻重量和降低系统复杂性,都拆除了内副翼,外襟翼与外(低速)副翼一起执行(全速)滚转控制。概念 1 包括通常的襟翼几何形状和外副翼,而概念 2 包括外襟翼,其沿翼展方向延伸了内副翼的长度。在所呈现的分析中未考虑滚转扰流板。飞行动力学评估表明,为了满足认证规范 CS-25 和操纵质量标准的要求,襟翼偏转率至少需要达到 16°/s。系统分析表明,现有 ADGB 仅能使襟翼以最大速率 0.43°/s 偏转,或略作修改后为 1.4°/s 偏转 _____________________________________________
• 自动襟翼功能 – 根据负载自动调整襟翼位置 • 关键事件 – 不对称襟翼位置 – 动力失控 – 由于自动襟翼功能导致襟翼意外缩回 • 全面监控 – 检测关键事件
• 自动襟翼功能 – 根据负载自动调整襟翼位置 • 关键事件 – 不对称襟翼位置 – 动力失控 – 由于自动襟翼功能导致襟翼意外缩回 • 全面监控 – 检测关键事件
• 自动襟翼功能 – 根据负载自动调整襟翼位置 • 关键事件 – 不对称襟翼位置 – 动力失控 – 由于自动襟翼功能导致襟翼意外缩回 • 全面监控 – 检测关键事件