通过脑皮层电图 (ECoG) 进行皮层刺激可能是在双向脑机接口 (BD-BCI) 中诱导人工感觉的有效方法。然而,电刺激引起的强电伪影可能会显著降低或掩盖神经信息。详细了解刺激伪影通过相关组织的传播可能会改进现有的伪影抑制技术或启发开发新的伪影缓解策略。因此,我们的工作旨在全面描述和模拟硬膜下 ECoG 刺激中伪影的传播。为此,我们收集并分析了四名患有癫痫并植入硬膜下 ECoG 电极的受试者的雄辩皮层映射程序数据。从这些数据中,我们观察到伪影在所有受试者的时间域中都表现出锁相和棘轮特性。在频域中,刺激导致宽带功率增加,以及基频刺激频率及其超谐波的功率爆发。伪影的空间分布遵循电偶极子的电位分布,在所有受试者和刺激通道中,拟合优度中值为 R 2 = 0.80。高达 ± 1,100 µ V 的伪影出现在距离刺激通道 4.43 至 38.34 毫米的任何地方。这些时间、光谱和空间特性可用于改进现有的伪影抑制技术,启发新的伪影缓解策略,并有助于开发新的皮质刺激方案。总之,这些发现加深了我们对皮质电刺激的理解,并为未来的 BD-BCI 系统提供了关键的设计规范。
摘要:基于脑电图的脑机接口 (BCI) 具有超越传统神经反馈训练的广阔治疗潜力,例如实现个性化和优化的虚拟现实 (VR) 神经康复范例,其中视觉体验的时间和参数与特定大脑状态同步。虽然 BCI 算法通常被设计为专注于信号中信息量最大的部分,但在这些大脑状态同步的应用中,至关重要的是,最终的解码器对代表各种心理状态的生理大脑活动敏感,而不是对诸如自然运动产生的伪影敏感。在本研究中,我们比较了从提取的大脑活动和 EEG 信号中包含的伪影中解码不同运动任务的相对分类准确度。在基于 VR 的逼真神经康复范例中,从 17 名慢性中风患者身上收集了 EEG 数据,同时执行六种不同的头部、手部和手臂运动。结果表明,在分类准确度方面,EEG 信号的伪像成分比大脑活动的信息量大得多。这一发现在不同的特征提取方法和分类流程中是一致的。虽然可以通过适当的清理程序恢复信息性脑信号,但我们建议不要仅将特征设计为最大化分类准确度,因为这可能会选择剩余的伪像成分。我们还建议使用可解释的机器学习方法来验证分类是否由生理脑状态驱动。总之,虽然信息性伪像在基于 BCI 的通信应用中是一个有用的朋友,但它们在估计生理 32 脑状态时可能是一个麻烦的敌人。33
基于材料和方法观察数据集1月1个月度流动时间序列(根据每日记录计算)是从2个全球流量指数和元数据存档(GSIM)获得的(18,47)。全球径流数据3中心(48)(GRDC)数据库,以每月规模提供河流流量,该数据库被4 GSIM排除,用作补充数据集。要计算具有最小偏差的RF,制定了两个5个选择标准:i)研究期限从1965年到2014年,以确保6个足够的站点进行空间覆盖范围的足够分析; ii)每月排放量仅在每年8个月可用10个月或更长时间的数据时才能计算年度季节性指数。鉴于气候迅速变化,我们通过将五个定期更新的河流流量数据集(表S3)从国民到2017 - 2019年全球水平结合在一起,扩展了分析,以包括最近的9年。拥有国家或11个大陆数据库的国家/地区的所有GRDC站(例如USGS数据)被替换,以避免重复的时间12系列河流。13为了获得全球范围的覆盖范围,使用了最近发表的全球栅格每月14个径流(Grun)数据集的重建(19)。Grun是从GSIM的原地15个月度河流流量观测到的,其空间分辨率为0.5°,涵盖了1902年至2014年的16个时期(19)。它是通过训练基于全球土壤湿度的降水和温度观察的机器学习算法的17阶段(GSWP3)数据集(19)的训练,因此,Grun无法明确考虑19的效果。S17)。观察到来自GRDC数据集的每月河流排放,并从部门间影响模型对比21项目(ISIMIP2A)重建的2A阶段的20个多模型模拟用于验证(19)。在新出版的G-Run合奏中的另外四个成员22在1965 - 2014年重叠,用来23个说明了径流上大气强迫数据集的不确定性,包括径流24次被CRUTSV4.04,GSWP3-W5E5,GSW3-W5E5,GSWP3-EEMBI和PGFFV3 25(49)强迫。与G-Run合奏的AE趋势的空间模式与Grun 26支持使用Grun进行气候变化检测和归因分析,而27进一步证实了我们结果的鲁棒性(图总而言之,原位观察结果28结合了气候变化的影响(包括ACC,自然强迫和自然29气候变化)和人类活动(例如储层,人类水管理和30种土地利用变化,缩写为HWLU)。相反,Grun和G-Run Ensemble仅31个说明了气候变化的影响。为了排除储层对原位观测值的RFS趋势的空间32模式的影响,水合物subbasin单元(PFAFSTETETER 33级别12)(50)与Grill等人提供的调节程度(DOR)集成在一起。(51)至34个将量规站区分为受储层影响(DOR> 0)的量规站,以及由储层(dor = 0)受到影响的35个。subbasin单位水平的DOR通过在河流范围内选择DOR的36个最大值来表示。使用了1965年至2014年期间的5×5°分辨率的crutem5数据集的平均空气温度数据(55)。有6,150个站点从储层影响中确定为37个,而3,914个站位于sibbasins或38个水库的下游(有49个车站由于在39个岛屿上的存在,而另外7个缺乏DOR信息的车站,因此位于水力发生范围外的49个站点)。在1979 - 2000年的平均降雪与降水量41的比例(52)时,全球范围内的40个降雪区域(52)都在全球范围内确定,其中包含0.5°的全球42降水量和降雪通量。2014年降雪时间序列的时间序列是根据全日制44覆盖率的第五代大气再分析(ERA5)计算得出的(53)。为排除降水季节性,观察到的每月栅格降水45来自全球降水气候中心(GPCC)(54)的数据以2.5×46 2.5°的分辨率在1965-2014时以每月量表为单位。48
神经退行性,神经发育和神经精神疾病是最大的公共卫生挑战之一,因为许多人缺乏调整疾病的治疗方法。缺乏有效疗法的主要原因是我们对病因和细胞机制的有限理解。全基因组关联研究正在提供越来越多的疾病相关遗传变异的目录。下一个挑战是阐明这些变体如何引起疾病,并将这种理解转化为疗法。本综述描述了最近开发的基于CRISPR的功能基因组学方法如何发现神经系统疾病中的疾病机制和治疗靶标。使用CRISPR干扰(CRISPRI)和CRISPR激活(CRISPRA),可在实验疾病模型中使用细菌CRISPR系统来编辑基因组并控制基因的表达水平。这些遗传扰动可以在大规模平行的遗传筛选中实施,以评估人类细胞的功能后果。CRISPR筛选与诱导的多能干细胞(IPSC)技术相结合,该技术能够推导分化的细胞类型,例如神经元和神经胶质,以及来自从患者获得的细胞的脑器官。基于疾病相关的基因表达变化的基于CRISPRI/CRISPRA的建模可以确定因果变化。遗传修饰者筛查可以阐明疾病机制,细胞类型选择性脆弱性的因果决定因素,并确定治疗靶标。
1. Mulert, C.、Pogarell, O. 和 Hegerl, U. 同步 EEG-fMRI:精神病学展望。CEN, 39(2),61–64 (2008)。https://doi.org/10.1177/155005940803900207 2. Shams, N.、Alain, C. 和 Strother, S. 同步 EEG–fMRI 中诱发反应的 BCG 伪影去除方法比较。J. Neurosci. Methods 245, 137–146 (2015) 3. Iannotti GR、Pittau F.、Michel CM、Vulliemoz S. 和 Grouiller F. 基于 EEG 地图拓扑在同步 EEG-fMRI 记录中进行脉冲伪影检测。脑拓扑; 28(1):21-32 (2015) 4. Allen, PJ, Polizzi, G., Krakow, K., Fish, DR 和 Lemieux, L. Identification of EEG events in the MR scanner: the problem of pulse pseudodragon and a method for its subtraction. Neuroimage 8(3), 229–239 (1998) 5. C. Bénar, Y. Aghakhani, Y. Wang 等,Quality of EEG insynchronous EEG–fMRI for epilepsy,Clin. Neurophysiol. 114 (3), 569–580 (2003) 6. K. Niazy, CF Beckmann, GD Iannetti 等, 使用最优基础集从 EEG 数据中去除 FMRI 环境伪影, Neuroimage 28 (3), 720–737 (2005) 7. Kruggel F, Wiggins CJ, Herrmann CS 等, 在 3.0 Tesla 场强下功能性 MRI 期间记录事件相关电位。Magn Reson Med, 44(2): 277-282 (2000) 8. Niazy, RK, Beckmann, CF, Iannetti, GD, Brady, JM 和 Smith, SM, 使用最优基础集从 EEG 数据中去除 FMRI 环境伪影。 Neuroimage 28(3), 720–737 (2005) 9. Li Hu, Zhiguo Zhang: EEG 信号处理和特征提取。Springer Nature (2019) 10. Ibrahim Sadek, Jit Biswas, Bessam Abdulrazak。心冲击信号处理:综述。健康
近年来,理论和实证研究对亲属选择在塑造性冲突模式中所起的作用产生了浓厚兴趣,尤其关注男性伤害特征。然而,这项工作仅关注常染色体基因,因此仍不清楚人口统计学如何调节基因组其他部分(如性染色体和细胞质元素)中男性伤害基因座的进化。为了研究这一点,我们扩展了现有的性冲突模型,以应用于这些不同的遗传模式。我们首先分析一般情况,揭示性别特异性相关性、生殖价值和当地竞争强度如何结合起来决定男性伤害的可能性。然后,我们分析了一系列人口统计学明确的模型,以评估分散、世代重叠、生殖偏差和人口调节机制如何影响整个基因组的性冲突,并推动核基因和细胞质基因之间的冲突。然后,我们探讨性别偏见对这些人口统计学参数的影响,展示它们如何进一步加剧常染色体和性染色体之间的冲突。最后,我们概述了如何使用不同的交叉方案来识别这些基因组内冲突的特征。
缩写:FCN = 完全卷积神经网络;MSE = 均方误差;SSIM = 结构相似性指数在 MRI 检查期间,患者运动会导致伪影,而伪影是临床实践中造成图像质量下降的常见原因,据报道,这会影响 10% – 42% 的脑部检查的图像质量。1、2 在图像采集时可能会识别出对 MRI 检查诊断价值有重大影响的运动伪影,导致近 20% 的 MRI 检查出现重复序列。1、3 这些重复序列会给放射科带来大量的时间和财务成本。1 由于无法保证患者在重复序列期间能够更好地保持静止,因此图像的诊断价值往往会受到影响。
已经进行了各种研究来减少脑电图中的伪影。改进脑带记录技术、使用计算机方法去除伪影以及使用各种滤波器都是提高脑电波记录质量的方法 [3, 7-8]。在 Lee One 等人的干预下,使用自动系统去除伪影,其灵敏度为 82.4%,特异性为 83.3%,并在很大程度上消除了伪影。该方法的灵敏度和特异性在很大程度上类似于由受过训练的操作员去除伪影 [9]。在另一项研究中,肉毒杆菌毒素注射用于减少肌源性伪影,这显著减少了肌源性伪影 [10]。去除肌肉伪影已被证明可将癫痫发作定位的灵敏度从 62% 提高到 81%,其最佳效果是在具有中度至重度肌肉伪影的发作带中。去除伪影可以更早地检测到鱼鳞病改变并检测到隐藏在伪影中的物品 [6]。另一方面,也有研究表明,使用一些方法和计算机程序去除伪影的效度较低[11]。
脑电图是使用分布在颅骨周围的小电极记录的。电极的数量各不相同,国际临床神经生理学联合会采用的标准之一是国际 10-20 电极放置协议,该协议描述了 21 个电极的放置位置[ 24 ],但也有许多应用使用 35 通道、125 通道甚至高密度 256 通道。《行为与脑科学杂志》的一篇文章探讨了不同数量的电极对移动活动期间记录的脑电图的影响。[19 ]随着电极数量的增加,捕获的脑电图质量会提高,但成本和设置也会变得更加复杂和耗时。
摘要 —EEG 信号是复杂的低频信号。因此,它们很容易受到外界因素的影响。EEG 伪影去除在神经科学中至关重要,因为伪影会对 EEG 分析结果产生重大影响。在这些伪影中,眼部伪影的去除最具挑战性。在本研究中,通过开发基于双向长短期记忆 (BiLSTM) 的深度学习 (DL) 模型,提出了一种新颖的眼部伪影去除方法。我们通过结合 EEGdenoiseNet 和 DEAP 数据集创建了一个基准数据集来训练和测试所提出的 DL 模型。我们还通过在不同 SNR 水平下用 EOG 污染地面真实干净的 EEG 信号来增强数据。然后使用通过小波同步压缩变换 (WSST) 获得的高度局部化时频 (TF) 系数将 BiLSTM 网络馈送到从增强信号中提取的特征。我们还将基于 WSST 的 DL 模型结果与传统 TF 分析 (TFA) 方法,即短时傅里叶变换 (STFT) 和连续小波变换 (CWT) 以及增强原始信号进行了比较。首次提出的基于 BiLSTM 的 WSST-Net 模型获得了 0.3066 的最佳平均 MSE 值。我们的结果表明,与传统 TF 和原始信号方法相比,WSST-Net 模型显著提高了伪影去除性能。此外,所提出的 EOG 去除方法表明,它优于文献中许多传统和基于 DL 的眼部伪影去除方法。索引词 —EEG、眼部伪影、深度学习、LSTM、BiLSTM、WSST、STFT、CWT。