量子计算,即操纵量子物理系统进行数值计算,有望显著加快许多科学问题(包括经济学问题)的解决速度。然而,实现量子加速不仅仅是将经典算法转化为量子等效算法。1 一般来说,这是不可能的。即使可能,也不会带来计算收益。相反,实现量子加速需要构建完全不同的算法,利用叠加、纠缠、干涉和隧穿等量子现象。为了应对这一挑战,我们提出了一组新颖的算法,用于在量子退火器 (QA) 上解决动态规划问题(例如经济学中出现的问题)。这种专门的量子装置使用物理过程执行组合优化。QA 将问题的参数嵌入量子系统中,该系统会演化以找到其最低能量配置。这相当于确定全局最小化损失函数的状态变量值(Farhi 等人,2000 年)。QA 试图解决传统计算机无法解决的 NP 问题,从所有状态的线性组合(量子叠加)开始,并在几毫秒内返回候选解决方案,而不管问题大小(Venegas-Andraca 等人,2018 年)。更具体地说,我们的论文做出了三个关键贡献:
可再生能源和电动汽车 (EV) 是实现可持续城市的关键技术。然而,可再生能源的间歇性发电和电动汽车充电导致的峰值负荷增加可能会给电力系统带来技术挑战。通过能源系统优化改善负荷匹配可以最大限度地减少这些挑战。本文评估了由风能和太阳能供电的净零能耗城市的最佳城市规模能源匹配潜力,考虑了三种电动汽车充电方案:机会充电、智能充电和车辆到电网 (V2G)。以瑞典西海岸的一个城市为例。智能充电和 V2G 方案旨在最大限度地减少发电和负荷之间的不匹配,并被表述为二次规划问题。模拟结果表明,在采用 V2G 方案且风能-光伏发电份额为 70:30 的净零能耗城市中,实现了最佳负荷匹配性能。最佳净零能耗城市的负载匹配性能从机会充电的 68% 提高到智能充电的 73%,再到 V2G 的 84%。研究还表明,参与 V2G 方案的 2.4 GWh 电动汽车电池在提高城市规模负载匹配性能方面相当于 1.4 GWh 固定储能。研究结果表明,电动汽车具有为城市能源系统提供灵活性的巨大潜力。
许多人都有拖延症,无法优先处理最重要的工作。为了帮助用户克服此类问题,Habitica 等游戏化生产力工具使用了启发式积分系统,但这可能会适得其反。我们最近提出了一种更有原则性的积分值计算方法,以避免此类问题。虽然理论上很有前景,但即使对于非常短的待办事项清单,也需要大量计算。在这里,我们提出了一种可扩展的近似方法,使我们的待办事项清单游戏化原则方法可在现实世界中使用。我们的方法利用人工智能来生成游戏化的待办事项清单,其中每个任务都受到一定数量的积分的激励,这些积分传达了该任务的长期价值。我们的新方法更具可扩展性的原因在于,它将计算用户如何最好地实现其目标的长期计划的问题分解为一系列较小的规划问题。我们通过将该方法应用于目标、子目标和任务数量不断增加的待办事项列表来评估该方法的可扩展性,并且我们还增加了目标层次结构的嵌套层数。我们发现该方法可以使 Web 和移动应用程序为相当大的待办事项列表计算出出色的积分系统,其中最多 576 个任务分布在最多 9 个不同的顶级目标上。我们的方法可通过 API 1 免费获得。这使得我们的方法易于在游戏化的 Web 应用程序和移动应用程序中使用。
使用生成式人工智能为自主系统生成行动计划。联系人 Damien Pellier (Damien.Pellier@imag.fr) LIG-Marvin Humbert Fiorino (Humbert.Fiorino@imag.fr) LIG-Marvin,关键词 自动规划,生成式人工智能 上下文 自动规划 [1] 是人工智能的一个领域,其目的是设计决策算法用于自主系统,即机器人、无人机、机器人等代理。由于这些系统无需人工监督即可“自主”运行,因此它们必须始终制定行动计划以实现分配给它们的目标。众所周知,自主规划是 NP 难问题,而领域特定语言 (DSL)(如 PDDL(规划领域描述语言)[2])被设计用于将代理任务(行动、目标和世界状态等)建模/指定为规划问题。计划生成基于许多经典的 AI 技术,例如树搜索和启发式搜索、SAT 或 CSP 问题求解等(有关更多详细信息,请参阅 PDDL4J [3] 和 [1])。同时,生成人工智能(也称为生成 AI 或 GenAI [4])是能够使用生成模型生成文本、图像或其他媒体的人工智能 [5][6][7]。生成 AI 模型学习其输入训练数据的模式和结构,然后生成具有相似特征的新数据。在 2020 年代初期,基于 Transformer 的深度神经网络的进步使许多生成 AI 系统成为可能,这些系统以接受自然语言提示作为输入而闻名。其中包括大型语言模型聊天机器人(如 ChatGPT、Bing Chat、Bard 和 LLaMA)以及文本到图像的人工智能艺术系统(如 Stable Diffusion、Midjourney 和 DALL-E)。
摘要 . 本研究旨在实施一个优化模型,该模型用于连接重型车辆加油站的制氢设施,用于废物管理和运输领域。该模型由两个连续的混合整数线性规划问题组成。第一个问题解决车辆加油计划问题,第二个问题解决工厂设计和运营问题。该模型的输出是工厂的设计和运行参数以及车辆加油计划,以实现氢气的最低平准成本。研究了电力供应的不同可能性:电网电力、太阳能光伏和水力发电。最有利可图的选择是安装 10 MW 太阳能光伏场,连接 3.3 MW 电解器和 3700 kg 储存器。由此产生的氢气平准成本为 10.24 欧元/千克。如果不考虑售电收入,从电网购买电力成为最具成本效益的选择。这种情况下,电解器和储氢器的大小分别为 760 kW 和 405 kg,氢气的平准化成本为 13.75 欧元/kg。对后一种情况进行的敏感性分析表明,最合理的输入参数是电解器单位消耗和电力成本。还进行了统计分析,考虑了随机故障分布,获得了电解器容量为 700-800 kW 和氢气储氢器大小为 1300-1400 kg 的最佳值。考虑到目前的电价和没有补贴,氢气在能源市场的渗透成本仍然很高。
自适应自动驾驶汽车进行的抽象搜索操作多年来一直是引起人们极大兴趣的话题。此类操作需要精心安排的多个车辆的安排协调,这些车辆在感兴趣的地区执行搜索任务。由于海事环境的固有不确定性,如果车辆具有重要的能力以适应其任务以实时匹配其检测到的环境,则可能无法保持最初计划的搜索时间表。我们提出了一种多车自适应算法,用于动态评估和弹性重新规划在海上环境中常见的可变长度任务。在自适应评估和重新规划问题中,最初计划通过自适应,自主搜索工具执行一组任务。任务根据先验知识和预期的结果在预定的时间表下分配给搜索车辆。由于车辆对环境或目标姿势等原位条件的自主性和反应性,因此每个任务所需的精确持续时间和行动尚不清楚。我们开发了一个隐藏的马尔可夫模型(HMM),用于传播任务估计,并加上基于二次编程的弹性重新安排机。结果是一种集成的估计和安排适应方案,该方案迅速,有效地基于原位观察结果重新计划了车辆的时间表。数值模拟结果表明,与现有方法相比,这种新颖的HMM方法可避免的时间表变化超过两倍。
摘要 — 我们考虑电力容量扩张模型,该模型通过最小化投资和运营成本来优化投资和退役决策。为了为规划和政策决策提供可靠的支持,这些模型需要包括详细的运营和时间耦合约束,考虑与天气相关的参数和需求数据的多种可能实现,并允许对离散投资和退役决策进行建模。这些要求导致大规模混合整数优化问题,而这些问题是现成的求解器无法解决的。因此,实际的解决方法通常依赖于精心设计的抽象技术,以在减少计算负担和模型准确性之间找到最佳折衷。Benders 分解提供了可扩展的方法来利用分布式计算资源并使模型具有高分辨率和计算性能。在本研究中,我们为具有多个规划期、随机运营场景、时间耦合策略约束以及多日储能和水库水力资源的大规模容量扩张模型实施了一种量身定制的 Benders 分解方法。使用多个案例研究,我们还评估了几种水平集正则化方案以加速收敛。我们发现,在可行集内部选择规划决策的正则化方案与以前发布的方法相比表现出更优异的性能,从而能够以前所未有的计算性能解决高分辨率混合整数规划问题。
工业排班调度是制造业高效规划和运营的重要组成部分。挑战在于为具有多个生产基地的端到端制造系统找到最佳生产计划。该计划必须遵守许多约束,包括法律法规和生产基地之间有限的中间存储。在汽车行业等批量密集型行业,还必须满足生产目标走廊。优化目标是在满足所有约束的同时最大限度地降低劳动力成本。工业排班调度 (QISS) 的量子算法 [1] 提供了第一个完全量子的方法来寻找受数量约束的工业劳动力规划问题的精确解决方案。基于 Grover 自适应搜索 (GAS) [2, 3],它继承了 Grover 算法相对于经典非结构化搜索方法(如蛮力搜索或随机搜索)的渐近二次加速。但是,这种二次加速导致实际加速的问题规模受到限制。一方面,寻求非常大的问题的精确解是不切实际的,因为:1)解决方案空间随着问题规模呈指数增长;2)约束通常对解决方案空间施加的结构非常小。因此,必须诉诸(经典的)启发式方法,例如模拟退火 [4] 或张量网络方法 [5]。另一方面,对于可以找到精确解的足够小的问题,与经典计算机相比,量子计算机的时钟速度较差,这往往会抵消二次加速 [6]。那么一个自然的问题是:是否存在一种机制,其中 QISS 可以返回精确的解决方案,其运行时间在现实世界中是可以接受的,并且优于经典的非结构化搜索?
摘要:基于规则的微电网调度策略在过去二十年中受到了广泛关注。然而,最近的大量文献已确凿地表明,在优化微电网规模的同时,优化运营调度具有诸多好处。这通常被称为微电网设计和调度协同优化 (MGDCO)。然而,据可查明,文献中所有现有的 MGDCO 模型都考虑了 24 小时解析的日前时间范围,以实现相关的最佳能源调度过程。也就是说,在更广泛的相关文献中,通常没有关于多日时间范围内的智能、前瞻性能源调度策略。为此,本文介绍了一种新颖的 MGDCO 建模框架,该框架将基于套利感知线性规划的多日能源调度策略集成到基于元启发式的标准微电网投资规划流程中。重要的是,该模型通过生成考虑三天内情景的最佳调度解决方案,有效地延长了微电网投资规划问题中主流能源调度优化的时间范围。基于从测试案例微电网获得的数值模拟结果,验证了所提出的基于优化的调度策略在微电网规模确定过程中的有效性,同时保留了计算的可处理性。具体而言,将使用制定的 72 小时调度策略的所提出的投资规划框架与照常的 MGDCO 方法进行比较,结果表明它可以将微电网的全寿命成本降低高达 8%。所提出方法的优异性能在很大程度上可归因于有效利用了电表后锂离子电池存储,从而提高了整体系统的灵活性。
简介 命题可满足性 (SAT) 或其他约束形式主义的编译已成为解决不同规划和模型检查变体的成功方法(Kautz 和 Selman 1992;Biere 等人 1999)。大多数此类基于编译的技术通过向约束求解器(例如 SAT 求解器)提交多个查询来工作,并且每个查询都对问题进行编码“是否存在最多有 h 个步骤的见证转换序列?”,其中 h 是某个自然数,通常称为地平线。对多个增加的 h 值重复此操作。为了使这些方法完整,h 必须有一个上限,通常称为完整性阈值,如果没有更短的上限,则不会找到任何见证人。此外,界限越严格,这些基于编译的程序就越有效。先前的研究已经将状态空间的不同拓扑属性确定为不同变体模型检查和规划问题的完备性阈值。例如,对于安全属性的有界模型检查,Biere 等人将直径(状态空间中最长最短路径的长度)确定为完备性阈值。直径也是基于 SAT 的满意规划的完备性阈值。Biere 等人还将递归直径(状态空间中最长简单路径的长度)确定为活性属性有界模型检查的完备性阈值。Edmund Clarke(Clarke、Emerson 和 Sifakis 2009)在其 Turing 中将识别和计算完备性阈值视为模型检查的一个活跃研究领域
