深空立方体卫星正成为普通航天器的宝贵替代品。它们的开发可以标志着太空探索的新纪元,由于任务成本明显降低,为许多太空领域参与者拓宽了可能性。为了正确利用微型探测器,自主导航是必不可少的支柱。在此框架中,视线 (LoS) 导航是深空巡航期间状态估计的宝贵选择。视线导航是一种光学技术,基于对可见天体(例如行星)的观测,这些天体的星历表是众所周知的。这些天体的方向是通过机载光学仪器(照相机或星跟踪器)获得的,并在导航滤波器中将其与机载存储的星历表检索到的实际位置进行比较。在机载上执行完整估计程序的可能性使该技术成为自主深空立方体卫星的有效候选者。导航精度尤其取决于两个特性:观测几何和视线方向提取精度 [1]。第一个取决于任务场景,它定义了可见物体及其相对几何形状。第二个取决于成像硬件、图像处理算法以及任务几何形状。尽管可以稍微调整任务以在有利的观测几何窗口期间发生 [2],但通常它不够灵活,无法提高估计精度。因此,LoS 方向提取精度在整体导航性能中起着至关重要的作用。在此背景下,这项工作旨在正确生成合成星跟踪器图像,然后用于测试设计的 LoS 提取算法的性能。合成图像的生成取决于成像传感器和镜头的特性。对于星跟踪器,假设使用针孔相机模型。Hipparcos-2 目录用于检索可见恒星的方向,这些方向在传感器参考系中转换。恒星的视星等转换为传感器阵列上读取的光电子数量。此转换取决于传感器的特性(像素大小、填充因子、量子效率)、镜头直径和曝光时间。为了在恒星质心算法中达到亚像素精度,入射光被故意弄模糊,因此信息分散在不同的像素上。这是用高斯分布模拟的。行星的模拟不那么简单,因为形状和视星等都取决于观测几何。为了正确
由于受月球引力的影响,地月空间物体的轨道是非开普勒轨道,无法通过一组简单的特征进行一般参数化。从地球上看,物体也更暗淡,移动速度相对较慢;预计探测和跟踪都会更加困难。在本文中,我们从地球和月球上假设的地面传感器的角度,回顾了一组可能的轨道及其预期的天文测量和光度特征。虽然可能存在多种轨道,但我们重点关注在会合框架中闭合(即周期性)并从平动点(圆形限制性三体问题的静止平衡)发出的特殊类型的轨道。我们研究了 31 个独立的元素周期轨道系列(Doedel 等人,2007 年),每个都是光滑流形。对于每个系列,我们生成一系列具有代表性的会合位置和速度,并基于多面卫星模型模拟预期的观测特征(例如赤经、赤纬、视星等)。在这项研究中,我们希望更好地了解遥感技术如何为地月空间中的航天器发挥作用,以支持下一代传感器架构,包括太空实验,例如 AFRL 的地月公路巡逻系统 (CHPS) 概念。
摘要 2020 年 2 月,新西兰收集了大量近距离操作的地球静止卫星观测数据。这些测量是“幻影回声”实验的一部分,该实验是澳大利亚、加拿大、新西兰、英国和美国之间的合作活动。作为一个合适的案例研究,选择了任务扩展飞行器 1 (MEV-1) 和 Intelsat 901 之间的对接。在近距离操作的最后部分,两颗卫星位于太平洋上空,因此从新西兰可以看到。这些观测是在位于奥克兰北部旺阿帕劳阿半岛的国防技术局 (DTA) 空间领域意识 (SDA) 天文台进行的。所有图像均使用配备 FLI ML11002 CCD 相机的 11 英寸 (279 毫米) Celestron Edge HD 望远镜拍摄的。DTA 天文台最近已完全自动化,可以整夜连续收集数据。每个晴朗的夜晚,为了提高光度测定和天体测量的时间分辨率,我们经常会收集多达 1500 张图像,采样率约为每分钟 3 帧(每小时 180 帧)。基于 5 秒的曝光时间,卫星探测的视星等极限约为 15。实际上,只有当物体的星等约为 14 或更亮时,结果才是可以接受的。数据缩减是在 StarView 中执行的,这是 DTA 为 SDA 图像分析开发的专用软件工具。专门开发的数据分析算法用于恒星(恒星)图像和卫星(非恒星)图像的天体测量校准。基于视野中识别的大约 100-400 颗恒星,天体测量解决方案的典型 RMS 误差为 0.2 角秒。校准时使用了欧洲航天局的 GAIA 目录 (DR2),星等限制在 16 级以下。两颗卫星之间的相对天体测量随机测量误差通常小于 0.1 角秒,相当于太空中的 20 米以内。基于 GAIA G 波段的典型光度校准产生的 RMS 误差约为 0.1 – 0.2 个量级。同时,在良好的大气条件下,孔径光度测定的随机误差仅在 0.02 到 0.04 之间。利用 MEV-1 和 Intelsat 901 在近距操作期间获得的高质量测量结果,可以将观测到的天体测量和光度数据中的某些特征与任务期间执行的实际操作和其他关键事件关联起来。事实证明,现成的小孔径光学设备可成功用于监测地球静止轨道 (GEO) 上的近距操作并收集重要信息以供空间领域感知。